Topological Methods in Nonlinear Analysis

A formula for the coincidence Reidemeister trace of selfmaps on bouquets of circles

P. Christopher Staecker

Full-text: Open access

Abstract

We give a formula for the coincidence Reidemeister trace of selfmaps on bouquets of circles in terms of the Fox calculus. Our formula reduces the problem of computing the coincidence Reidemeister trace to the problem of distinguishing doubly twisted conjugacy classes in free groups.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 33, Number 1 (2009), 41-50.

Dates
First available in Project Euclid: 27 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461782238

Mathematical Reviews number (MathSciNet)
MR2512953

Zentralblatt MATH identifier
1181.55003

Citation

Staecker, P. Christopher. A formula for the coincidence Reidemeister trace of selfmaps on bouquets of circles. Topol. Methods Nonlinear Anal. 33 (2009), no. 1, 41--50. https://projecteuclid.org/euclid.tmna/1461782238


Export citation

References

  • R. Crowell and R. Fox, Introduction to Knot Theory, Springer (1963) \ref\key 2
  • R. Dobreńko and J. Jezierski, The coincidence Nielsen number on nonorientable manifolds , Rocky Mountain J. Math., 23 , 67–85 (1993) \ref\key 3
  • E. Fadell and S. Husseini, The Nielsen number on surfaces , Contemp. Math., 21 , 59–98 (1983) \ref\key 4
  • P. C. Staecker, Computing twisted conjugacy classes in free groups using nilpotent quotients (2007). preprint \ref \key 5 ––––, On the uniqueness of the coincidence index on orientable differentiable manifolds , Topology Appl., 154 , 1961–1970 (2007) \ref\key 6 ––––, Axioms for a local Reidemeister trace in fixed point and coincidence theory on differentiable manifolds (2008, J. Fixed Point Theory Appl.), to appear