Topological Methods in Nonlinear Analysis

Monotone iterative method for infinite systems of parabolic functional-differential equations with nonlocal initial conditions

Anna Pudełko

Full-text: Open access

Abstract

The nonlocal initial value problem for an infinite system of parabolic semilinear functional-differential equations is studied. General operators of parabolic type of second order with variable coefficients are considered and the system is weakly coupled. We prove a theorem on existence of a classical solution in the class of continuous bounded functions and in the class of continuous functions satisfying a certain growth condition. Partial uniqueness result is obtained as well.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 36, Number 1 (2010), 101-117.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461251066

Mathematical Reviews number (MathSciNet)
MR2744834

Zentralblatt MATH identifier
1220.35181

Citation

Pudełko, Anna. Monotone iterative method for infinite systems of parabolic functional-differential equations with nonlocal initial conditions. Topol. Methods Nonlinear Anal. 36 (2010), no. 1, 101--117. https://projecteuclid.org/euclid.tmna/1461251066


Export citation

References

  • A. Bartłomiejczyk and H. Leszczyński, Comparison principles for parabolic differential-functional initial-value problems , Nonlinear Anal., 57 (2004), 63–84 \ref\key 2
  • S. Brzychczy, Existence and uniqueness of solutions of infinite systems of semilinear parabolic differential-functional equations in arbitrary domains in ordered Banach spaces , Math. Comput. Modelling, 36 (2002), 1183–1192 \ref\key 3
  • L. Byszewski, Application of monotone iterative method to a system of parabolic semilinear functional-differential problems $i$th nonlocal conditions , Nonlinear Anal., 28 (1997), 1347–135? \ref\key 4 ––––, Monotone iterarive method for a system of nonlocal initail-boundary parabolic problems , J. Math. Anal. Appl., 177 (1993), 445–458 \ref\key 5 ––––, Strong maximum principle for implicit nonlinear parabolic functional-differential inequalities in arbitrary domains , Univ. Iagel. Acta Math., 24 (1984), 327–339 \ref\key 6
  • S. D. Eidel'man, Parabolic Systems, North-Holland (1969) \ref\key 7
  • A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc. Englewood Cliffs, New Jersey (1964) \ref\key 8
  • G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iteration Techniques for Nonlinear Differential Equations, Monoghraphs, Advanced Texts and Surveys in Pure and Applied Mathematics, 27 , Boston, Pitman (1985) \ref\key 9
  • W. Mlak, An example of the equation $u_t=u_{xx}+f(x,t,u)$ with distinct maximum and minimum solutions of mixed problem , Ann. Pol. Math., 13 (1963), 101–103 \ref\key 10
  • A. Pudełko, Monotone iteration for infinite systems of parabolic equations with functional dependence , Ann. Polon. Math., 90 (2007), 1–19 \ref\key 11 ––––, Existence of solutions for infinite systems of parabolic equations with functional dependence , Ann. Polon. Math., 86 (2005), 123–135 \ref\key 12
  • J. Szarski, Differential Inequalities, Monografie Matematyczne, 43 , PWN, Warszawa (1965) \ref\key 13
  • J. Wu, Theory and Applications of Partial Functional Equations, Springer–Verlag, New York, Berlin, Heidelberg, Tokyo (1996)