Topological Methods in Nonlinear Analysis

Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations

Antonio Azzollini and Alessio Pomponio

Full-text: Open access

Abstract

In this paper we prove the existence of a ground state solution for the nonlinear Klein-Gordon-Maxwell equations in the electrostatic case.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 35, Number 1 (2010), 33-42.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461248999

Mathematical Reviews number (MathSciNet)
MR2677428

Zentralblatt MATH identifier
1203.35274

Citation

Azzollini, Antonio; Pomponio, Alessio. Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations. Topol. Methods Nonlinear Anal. 35 (2010), no. 1, 33--42. https://projecteuclid.org/euclid.tmna/1461248999


Export citation

References

  • V. Benci, Some remarks on the theory of relativity and the naive realism , The applications of mathematics to the sciences of nature (P. Cerrai et al., eds.), Kluwer, Dordrecht (2002), 39–78 \ref\key 2
  • V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations , Topol. Methods Nonlinear Anal., 11 (1998), 283–293 \ref\key 3 ––––, Solitary waves of the nonlinear Klein–Gordon field equation coupled with the Maxwell equations , Rev. Math. Phys., 14 (2002), 409–420 \ref\key 4 ––––, Some remarks on the semilinear wave equations , Progr. Nonlinear Differential Equations Appl., 54 (2003), 141–162 \ref\key 5
  • V. Benci, D. Fortunato, A. Masiello and L. Pisani, Solitons and the electromagnetic field , Math. Z., 232 (1999), 73–102 \ref\key 6
  • H. Berestycki and P. L. Lions, Nonlinear scalar field equations,\romI – Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313–345 \ref\key 7 ––––, Nonlinear scalar field fquations, \romII – Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347–375 \ref\key 8
  • D. Cassani, Existence and non-existence of solitary waves for the critical Klein–Gordon equation coupled with Maxwell's equations , Nonlinar Anal., 58 (2004), 733–747 \ref\key 9
  • S. Coleman, V. Glaser and A. Martin, Action minima among solutions to a class of euclidean scalar field equations , Comm. Math. Phys., 58 (1978), 211–221 \ref\key 10
  • K. Dodd, D. Eilbeck, J. D. Gibbon and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London, New York (1982) \ref\key 11
  • T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations , Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893–906 \ref\key 12 ––––, Non-existence results for the coupled Klein–Gordon–Maxwell equations , Adv. Nonlinear Stud., 4 (2004), 307–322 \ref\key 13
  • B. Felsager, Geometry, Particle and Fields, Odense University Press (1981) \ref\key 14
  • J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, London (1962) \ref\key 15
  • S. Kichenassamy, Nonlinear Wave Equations, Dekker, NY (1996) \ref\key 16
  • L. Landau and E. Lifchitz, Théorie des Champs, Editions Mir, Moscou (1970) \ref\key 17
  • P. L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. \romPart I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109–145 \ref\key 18 ––––, The concentration-compactness principle in the calculus of variation. The locally compact case. \romPart II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283 \ref\key 19
  • E. Long, Existence and stability of solitary waves in non-linear Klein–Gordon–Maxwell equations , Rev. Math. Phys., 18 (2006), 747–779 \ref\key 20
  • R. Rajaraman, Solitons and Instantons, North Holland, Amsterdam, Oxford, New York, Tokio (1988) \ref\key 21
  • W. Thirring, Classical Mathematical Physics, Springer, New York, Vienna (1997) \ref\key 22
  • M. Willem, Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, 24 , Birkhäuser Boston, Inc., Boston, MA (1996)