Topological Methods in Nonlinear Analysis

Note on periodic solutions of relativistic pendulum type systems

Kazuya Hata, Jiaquan Liu, and Zhi-Qiang Wang

Full-text: Open access

Abstract

We establish multiplicity results of periodic solutions for relativistic pendulum type systems of ordinary differential equations. We provide a different approach to the problems and answer some questions raised in [Periodic solutions of the forced relavitistic pendulum, Differential Integral Equations 23 (2010), 801-810], [Periodic solutions of Lagrangian systems of relatvitistic oscillations, Comm. Appl. Anal. 15 (2011), 235-250] by Brezis and Mawhin recently.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 42, Number 2 (2013), 417-425.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461248986

Mathematical Reviews number (MathSciNet)
MR3203456

Zentralblatt MATH identifier
1300.34092

Citation

Hata, Kazuya; Liu, Jiaquan; Wang, Zhi-Qiang. Note on periodic solutions of relativistic pendulum type systems. Topol. Methods Nonlinear Anal. 42 (2013), no. 2, 417--425. https://projecteuclid.org/euclid.tmna/1461248986


Export citation

References

  • C. Bereanu and J. Mawhin, Periodic solutions of nonlinear perturbations of $\phi$-Laplacians with possibly bounded $\phi$ , Nonlinear Anal., 68 (2008), 1668–1681 \ref\key 2 ––––, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian , J. Differential Equations, 243 (2007), 536–557 \ref\key 3
  • C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\phi$-Laplacians , J. Dynam. Differential Equations, 22 (2010), 463–471 \ref\key 4
  • C. Bereanu and P. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum , Proc. Amer. Math. Soc., to appear \ref\key 5
  • M.S. Berger and M. Schechter, On the solvability of semi-linear gradient operator equations , Adv. in Math., 25 (1977), 97–132 \ref\key 6
  • H. Brezis and J. Mawhin, Periodic solutions of the forced relavitistic pendulum , Differential Integral Equations, 23 (2010), 801–810 \ref\key 7 ––––, Periodic solutions of Lagrangian systems of relatvitistic oscillations , Comm. Appl. Anal., 15 (2011), 235–250 \ref\key 8
  • A. Castro, Periodic solutions of the forced pendulum equation , Differential Equations (Ahmad, Keener and Lazer, eds.), Academic Press, New York (1980), 149–160 \ref\key 9
  • K.-C. Chang, On the periodic nonlinearity and the multiplicity of solutions , Nonlinear Anal., 13 (1989), 527–537 \ref\key 10
  • C. Conley and E. Zehnder, The Birkhoff–Lewis fixed point theorem and a conjecture of V. Arnold , Invent. Math., 73 (1983), 33–49 \ref\key 11
  • E.N. Dancer, On the use of asymptotics in nonlinear boundary value problems , Ann. Mat. Pura Appl., 131 (1982), 167–185 \ref\key 12
  • G. Hamel, Ueber erzwungene Schingungen bei endlischen Amplituden , Math. Ann., 86 (1922), 1–13 \ref\key 13
  • J.Q. Liu, A generalized Saddle point theorem , J. Differential Equations, 82 (1989), 372–385 \ref\key 14
  • J. Mawhin, Forced second order conservative systems with periodic nonlinearity , Ann. Inst. H. Poincaré, 5 (1989), 415–434 \ref\key 15 ––––, Global results for the forced pendulum equation , Handbook of Differential Equations: Ordinary Differential Equations, 1 (A. Canada, P. Drábek and A. Fonda, eds.), Elsevier, Amsterdam (2004), 533–590 \ref\key 16 –––– Periodic solutions of the forced pendulum : classical vs relativistic, Le Matematiche, 65 (2010), 97–107 \ref\key 17 ––––, Multiplicity of solutions of variational systems involving $f$-Laplacians with singular $f$ and periodic nonlinearities , Discrete Contin. Dyn. Systems, to appear \ref\key 18 ––––, Periodic solutions of differential and difference systems with pendulum-type nonlinearities: variational approaches , preprint \ref\key 19
  • J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations , J. Differential Equations, 52 (1984), 264–287 \ref\key 20
  • J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, Berlin (1989) \ref\key 21
  • P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations , CBMS Reg. Conf. Ser. Math., 65 , Amer. Math. Sos., Providence, R.I. (1986) \ref\key 22
  • P.H. Rabinowitz, On a class of functionals invariant under a $\mathbb Z^n$ action , Trans. Amer. Math. Soc., 310 (1988), 303–311 \ref\key 23
  • A. Szulkin, A relative category and applications to critical point theory for strongly indefinite functionals , Nonlinear Anal., 15 (1990), 725–739 \ref\key 24
  • P.J. Torres, Periodic oscilations of the relavitistic pendulum with friction , Phys. Lett. A, 372 (2008), 6386–6387 \ref\key 25 ––––, Nondegeracy of the periodically forced Liénard differential equaiton with $\phi$-Laplacian, Comm.Contemmporary Math. , to appear \ref\key 26
  • M. Willem, Oscillations forcées de l'équation du pendule , Pub. IRMA Lille, 3 (1981), V-1–V-3