Topological Methods in Nonlinear Analysis

Generalized Sturm-Liouville boundary conditions for first order differential systems in the plane

Alessandro Fonda and Maurizio Garrione

Full-text: Open access

Abstract

We study asymptotically positively homogeneous first order systems in the plane, with boundary conditions which are positively homogeneous, as well. Defining a generalized concept of Fučík spectrum which extends the usual one for the scalar second order equation, we prove existence and multiplicity of solutions. In this way, on one hand we extend to the plane some known results for scalar second order equations (with Dirichlet, Neumann or Sturm-Liouville boundary conditions), while, on the other hand, we investigate some other kinds of boundary value problems, where the boundary points are chosen on a polygonal line, or in a cone. Our proofs rely on the shooting method.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 42, Number 2 (2013), 293-325.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461248981

Mathematical Reviews number (MathSciNet)
MR3203451

Zentralblatt MATH identifier
1312.34054

Citation

Fonda, Alessandro; Garrione, Maurizio. Generalized Sturm-Liouville boundary conditions for first order differential systems in the plane. Topol. Methods Nonlinear Anal. 42 (2013), no. 2, 293--325. https://projecteuclid.org/euclid.tmna/1461248981


Export citation

References

  • K. Ako, Subfunctions for ordinary differential equations \romIV, Funkcial. Ekvac., 11(1968), 185–195 \ref\key 2 ––––, Subfunctions for ordinary differential equations \romV, Funkcial. Ekvac., 12(1969), 239–249 \ref\key 3
  • H. Amann and E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems , Manuscripta Math., 32(1980), 149–189 \ref\key 4
  • A. Boscaggin and M. Garrione, Resonance and rotation numbers for planar Hamiltonian systems: multiplicity results via the Poincaré–Birkhoff theorem , Nonlinear Anal., 74(2011), 4166–4185 \ref\key 5
  • E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Mc- Graw–Hill, New York (1955) \ref\key 6
  • F. Dalbono and F. Zanolin, Multiplicity results for asymptotically linear equations, using the rotation number approach , Mediterr. J. Math., 4(2007), 127–149 \ref\key 7
  • E.N. Dancer, Boundary-value problems for weakly nonlinear ordinary differential equations, Bull. Austral. Math. Soc., 15(1976), 321–328 \ref\key 8 ––––, On the Dirichlet problem for weakly non-linear elliptic partial differential equations , Proc. Roy. Soc. Edinburgh A, 76(1977), 283–300 \ref\key 9
  • D. de Figueiredo and J.-P. Gossez, On the first curve of the Fučík spectrum of an elliptic operator, Differential Integral Equations, 7(1994), 1285–1302 \ref\key 10
  • M. del Pino, R. Manásevich and A. Murua, On the number of $2\pi$-periodic solutions for $u''+g(u)=s(1+h(t))$ using the Poincaré–Birkhoff Theorem , J. Differential Equations, 95(1992), 240–258 \ref\key 11
  • Y. Dong, On the solvability of asymptotically positively homogeneous equations with Sturm–Liouville boundary value conditions, Nonlinear Anal., 42(2000), 1351–1363 \ref\key 12 ––––, Maslov type index theory for linear Hamiltonian systems with Bolza boundary value conditions and multiple solutions for nonlinear Hamiltonian systems, Pacific J. Math., 221(2005), 253–280 \ref\key 13
  • P. Drábek and S. Invernizzi, On the periodic \romBVP for the forced Duffing equation with jumping nonlinearity, Nonlinear Anal., 10(1986), 643–650 \ref\key 14
  • L.H. Erbe, Nonlinear boundary value problems for second order differential equations, J. Differential Equations, 7(1970), 459–472 \ref\key 15
  • C. Fabry, Landesman–Lazer conditions for periodic boundary value problems with asymmetric nonlinearities , J. Differential Equations, 116(1995), 405–418 \ref\key 16
  • C. Fabry and A. Fonda, Periodic solutions of perturbed isochronous Hamiltonian systems at resonance, J. Differential Equations, 214(2005), 299–325 \ref\key 17
  • C. Fabry and P. Habets, Upper and lower solutions for second-order boundary value problems with nonlinear boundary conditions, Nonlinear Anal., 10(1986), 985–1007 \ref\key 18 ––––, Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities , Arch. Math., 60(1993), 266–276 \ref\key 19
  • A. Fonda, Positively homogeneous Hamiltonian systems in the plane, J. Differential Equations, 200(2004), 162–184 \ref\key 20 ––––, Topological degree and generalized asymmetric oscillators, Topol. Methods Nonlinear Anal., 28(2006), 171–188 \ref\key 21
  • A. Fonda and M. Garrione, Double resonance with Landesman–Lazer conditions for planar systems of ordinary differential equations, J. Differential Equations, 250(2011), 1052–1082 \ref\key 22
  • A. Fonda and L. Ghirardelli, Multiple periodic solutions of Hamiltonian systems in the plane, Topol. Methods Nonlinear Anal., 36(2010), 27–38 \ref\key 23
  • S. Fučík, Boundary value problems with jumping nonlinearities , Časopis Pěst. Mat., 101(1976), 69–87 \ref\key 24
  • T. Gallouet and O. Kavian, Résultats d'existence et nonexistence pour certains problèmes demi-linéaires à l'infini , Ann. Fac. Sci. Toulouse Math. (5), 3(1981), 201–246 \ref\key 25
  • V.V. Gudkov and A.Ja. Lepin, The solvability of certain boundary value problems for a second order ordinary differential equation , (Russian, Differencial'nye Uravnenija, 7(1971), 1779–1788) \ref\key 26
  • D.C. Hart, A.C. Lazer and P.J. McKenna, Multiple solutions of two point boundary value problems with jumping nonlinearities, J. Differential Equations, 59(1985), 266–281 \ref\key 27
  • P. Hartman, On boundary value problems for superlinear second order differential equations, J. Differential Equations, 26(1977), 37–53 \ref\key 28
  • M. Henrard, Optimal integral criterion of nonresonance for asymptotically positively homogeneous equations with Sturm–Liouville boundary conditions, Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8, 18(2000), 1–51 \ref\key 29
  • A.C. Lazer and P.J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4(1987), 243–274 \ref\key 30
  • A. Margheri, C. Rebelo and F. Zanolin, Maslov index, Poincaré–Birkhoff theorem and periodic solutions of asymptotically linear planar Hamiltonian systems , J. Differential Equations, 183(2002), 342–367 \ref\key 31
  • J. Mawhin and K. Schmitt, Upper and lower solutions and semilinear second order elliptic equations with non-linear boundary conditions , Proc. Roy. Soc. Edinburgh A, 97(1984), 199–207 \ref\key 32
  • J. Mawhin and H. B. Thompson, Nagumo conditions and second-order quasilinear equations with compatible nonlinear functional boundary conditions, Rocky Mountain J. Math., 41(2011), 573–596 \ref\key 33
  • C. Rebelo and F. Zanolin, On the existence and multiplicity of branches of nodal solutions for a class of parameter-dependent Sturm–Liouville problems via the shooting map, Differential Integral Equations, 13(2000), 1473–1502 \ref\key 34
  • B.P. Rynne, The Fučík spectrum of general Sturm–Liouville problems, J. Differential Equations, 161(2000), 87–109 \ref\key 35 ––––, Non-resonance conditions for semilinear Sturm–Liouville problems with jumping non-linearities , J. Differential Equations, 170(2001), 215–227 \ref\key 36
  • Y. Shan, Multiple solutions of generalized asymptotical linear Hamiltonian systems satisfying Sturm–Liouville boundary conditions , Nonlinear Anal., 74(2011), 4809–4819 \ref\key 37
  • C. Zanini and F. Zanolin, A multiplicity result of periodic solutions for parameter dependent asymmetric non-autonomous equations, Dynam. Contin. Discrete Impuls. Systems Ser. A Math. Anal., 12(2005), 343–361