Topological Methods in Nonlinear Analysis

Periodic solutions of a forced relativistic pendulum via twist dynamics

Stefano Marò

Full-text: Open access

Abstract

We prove the existence of at least two geometrically different periodic solutions with winding number $N$ for the forced relativistic pendulum. The instability of a solution is also proved. The proof is topological and based on the version of the Poincaré-Birkhoff theorem by Franks. Moreover, with some restriction on the parameters, we prove the existence of twist dynamics.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 42, Number 1 (2013), 51-75.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461247292

Mathematical Reviews number (MathSciNet)
MR3155614

Zentralblatt MATH identifier
1308.34051

Citation

Marò, Stefano. Periodic solutions of a forced relativistic pendulum via twist dynamics. Topol. Methods Nonlinear Anal. 42 (2013), no. 1, 51--75. https://projecteuclid.org/euclid.tmna/1461247292


Export citation

References

  • C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum like perturbations of singular and bounded $\phi$-laplacian , J. Dynam. Differential. Equations, 22 , 463–471 (2010) \ref\key 2
  • C. Bereanu and P. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum , to appear, Proc. Amer. Math. Soc., 140 (201), 2713–2719 \ref\key 3
  • H. Brezis and J. Mawhin, Periodic solutions of the forced relativistis pendulum , Differential Integral Equations, 23 , 801–810 (2010) \ref\key 4
  • P. Le Calvez and J. Wang, Some remarks on the Poincaré–Birkhoff theorem , Proc. Amer. Math. Soc., 138 , 703–715 (2010) \ref\key 5
  • J. Chu, J. Lei and M. Zhang, The stability of the equilibrium of a nonlinear planar system and application to the relativistic oscillator , J. Differential Equation, 247 , 530–542 (2009) \ref\key 6
  • E.N. Dancer, On the use of asymptotics in nonlinear boundary value problems , Ann. Mat. Pura Appl., 131 , 167–185 (1982) \ref\key 7
  • J. Franks, Generalizations of the Poincaré–Birkhoff theorem , Ann. of Math. (2), 128 , 139–151 (1988) \ref\key 8
  • A. Granas and J. Dugundji, Fixed Point Theory, Springer (2003) \ref\key 9
  • G. Hamel, Über erzwungene Schwingungen bei endlischen Amplituden , Math. Ann., 86 , 1–13 (1922) \ref\key 10
  • P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York (1964) \ref\key 11
  • M.W. Hirsch, Differential Topology, Springer–Verlag (1976) \ref\key 12
  • S. Krantz and H. Parks, A Primer of Real Analytic Functions, Birkhäuser (2002) \ref\key 13
  • M.A. Krasnosel'skiĭ, A.I. Petrov, A.I. Povolotskiy and P.P. Zabreĭko, Plane Vector Fields, Academic Press (1966) \ref\key 14
  • M. Kunze and R. Ortega, Twist mappings with non-periodic angles , Stability and Bifurcation for Non-autonomous Differential Equations, LNM, 2065 , Springer, Berlin (2013), 265–300 \ref\key 15
  • S. Lefschetz, Differential Equations: Geometric Theory, Dover, New York (1977) \ref\key 16
  • J. Mawhin, Resonance problems for some non-autonomous ordinary differential equations , Stability and Bifurcation for Non-autonomous Differential Equations, LNM, 2065 , Springer, Berlin (2013), 103–184 \ref\key 17
  • J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equation , J. Differential Equations, 52 , 264–287 (1984) \ref\key 18
  • J. Milnor, Lectures on the $h$-Cobordism Theorem, Princeton Univ. Press (1965) \ref\key 19
  • J. Moser, On the volume elements on a manifonld , Trans. Amer. Math. Soc., 120 , 286–294 (1965) \ref\key 20
  • R. Ortega, Retracts, fixed point index and differential equations , Rev. R. Acad. Cienc. Extras Fis. Nat. Ser. A. Mat. RACSAM, 102 , 89–100 (2008) \ref\key 21 ––––, Linear motions in a periodically forced Kepler problem , Portugal. Math., 68 , 149–176 (2011) \ref\key 22
  • R. Ortega and M. Tarallo, Degenerate equations of pendulum-type , Commun. Contemp. Math., 2 , 127–149 (2000) \ref\key 23
  • M. Willem, Oscillations forcées de l'équation du pendule , Pub. IRMA Lille, 3 , V-1–V-3 (1981)