Topological Methods in Nonlinear Analysis

On homotopy Conley index for multivalued flows in Hilbert spaces

Zdzisław Dzedzej and Grzegorz Gabor

Full-text: Open access

Abstract

An approximation approach is applied to obtain a homotopy version of the Conley type index in Hilbert spaces considered by the first author and W. Kryszewski. The definition given in the paper is more elementary and, as a by-product, gives a natural connection between indices of Kunze and Mrozek in a finite-dimensional case. Some geometric properties of the index from a paper of the second author are discussed in an infinite dimensional situation. Some additional properties for gradient differential inclusions are also presented.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 38, Number 1 (2011), 187-205.

Dates
First available in Project Euclid: 20 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461184811

Mathematical Reviews number (MathSciNet)
MR2893628

Zentralblatt MATH identifier
1248.37021

Citation

Dzedzej, Zdzisław; Gabor, Grzegorz. On homotopy Conley index for multivalued flows in Hilbert spaces. Topol. Methods Nonlinear Anal. 38 (2011), no. 1, 187--205. https://projecteuclid.org/euclid.tmna/1461184811


Export citation

References

  • J. P. Aubin, Optima and Equilibria, Springer, Berlin, Heidelberg (1993) \ref\key 2
  • A. Cellina, Approximation of set-valued mappings and fixed point theorems , Ann. Mat. Pura Appl., 82(1969), 17–24 \ref\key 3
  • A. Ćwiszewski and W. Kryszewski, Approximate smoothings of locally Lipschitz functionals , Boll. Un. Mat. Ital. (8), 5-B (2002), 289–320 \ref\key 4
  • F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York (1983) \ref\key 5
  • C. Conley, Isolated Invariant Sets and the Morse Index, CBMS, 38 (1978, Amer. Math. Soc. Publ., Providence, RI) \ref\key 6
  • Z. Dzedzej, On the Conley index in Hilbert spaces – a multivalued case , Banach Center Publ., 77(2007), 61–68 \ref\key 7 ––––, Conley type index and Hamiltonian inclusions , Acta Univ. Palacki Olomuc. Fac. Rerum Natur. Math., 49 (2010), 33–47 \ref\key 8
  • Z. Dzedzej and W. Kryszewski, Conley type index applied to Hamiltonian inclusions , J. Math. Anal. Appl., 347(2008), 96–112 \ref\key 9
  • G. Gabor, Homotopy index for multivalued flows on sleek sets , Set-Valued Anal., 13(2005), 125–149 \ref\key 10
  • L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Springer, Dordrecht, Boston, London (2006) \ref\key 12
  • M. Izydorek, A cohomological Conley index in Hilbert spaces and applications to strongly idefinite problems , J. Differential Equations, 170(2001), 22–50 \ref\key 13
  • M. Izydorek and K. Rybakowski, On the Conley index in Hilbert spaces in the absence of uniqueness , Fund. Math., 71(2002), 31–52 \ref\key 14 ––––, The Conley index in Hilbert spaces and a problem of Angenent and van der Vorst, Fund. Math., 173(2002), 77–100 \ref\key 15 ––––, Multiple solutions of strongly indefinite elliptic systems via a Galerkin-type Conley index theory , Fund. Math., 176(2003), 233–249 \ref\key 16
  • M. Kamenskiĭ, V. Obukhovskiĭ and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, W. de Gruyter, Berlin, New York (2001) \ref\key 17
  • W. Kryszewski, Graph-approximation of set-valued maps on noncompact domains , Topology Appl., 83(1998), 1–21 \ref\key 18
  • M. Kunze, Non-Smooth Dynamical Systems , Lecture Notes in Math., 1744 , Springer (2000) \ref\key 19
  • M. Kunze, T. Küpper and Y. Li, On Conley index theory for non-smooth dynamical systems , Differential Integral Equations 13(2000), 479–502 \ref\key 20
  • M. Mrozek, A cohomological index of Conley type for multivalued admissible flows , J. Differential Equations, 84 (1990), 15–51 \ref\key 21
  • D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc., 291 (1985), 1–41