Topological Methods in Nonlinear Analysis

Existence of periodic solutions for $p$-Laplacian neutral functional equation with multiple deviating arguments

Tian Xiang and Rong Yuan

Full-text: Open access

Abstract

By using the theory of coincidence degree and some refined analysis techniques, we study a general kind of periodic solutions to $p$-Laplacian neutral functional differential equation with multiple deviating arguments. A general analysis method to tackle with such equations is formed. Some new and universal results on the existence of periodic solutions are obtained, meanwhile, some known results in the literatures are improved. An example is provided as an application to our theorems.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 37, Number 2 (2011), 235-258.

Dates
First available in Project Euclid: 20 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461184785

Mathematical Reviews number (MathSciNet)
MR2849822

Zentralblatt MATH identifier
1242.34129

Citation

Xiang, Tian; Yuan, Rong. Existence of periodic solutions for $p$-Laplacian neutral functional equation with multiple deviating arguments. Topol. Methods Nonlinear Anal. 37 (2011), no. 2, 235--258. https://projecteuclid.org/euclid.tmna/1461184785


Export citation

References

  • M. A. Del Pino, M. Elgueta and R. F. Manásevich, A homotopic deformation along $p$ of a Lerray–Schauder degree result and existence for $(|u'|^{p-2}u')'+f(t,u)=0,u(0)=u(T)=0$, $p>1$ , J. Differential Equations, 80 (1989), 1–13 \ref\key 2
  • M. A. Del Pino and R. F. Manásevich, Multiple solutions for the $p$-Laplacian under global nonresonance , Proc. Amer. Math. Soc., 112 (1991), 131–138 \ref\key 3
  • C. Fabry and D. Fayyad, Periodic solutions of second order differential equations with a $p$-Laplacian and asymmetric nonlinearities , Rend. Istit. Univ. Trieste, 24 (1992), 207–227 \ref\key 4
  • R. E. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer, Berlin (1977) \ref\key 5
  • S. P. Lu and W. G. Ge, Periodic solutions of neutral differential equation with multiple deviating arguments , Appl. Math. Comput., 156 (2004), 705–717 \ref\key 6 ––––, Existence of periodic solutions for a kind of second-order neutral functional differential equation , Appl. Math. Comput., 157 (2004), 433–448 \ref\key 7
  • S. P. Lu, W. G. Ge and Z. X. Zheng, Periodic solutions to neutral differential equation with deviating arguments , Appl. Math. Comput., 152 (2004), 17–27 \ref\key 8
  • S. W. Ma, Z. C. Wang and J. S. Yu, Coincidence degree and periodic solutions of Duffing type equations , Nonlinear Anal., 34 (1998), 443–460 \ref\key 9
  • R. F. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with $p$-Laplacian like operators , J. Differential Equations, 145 (1998), 367–393 \ref\key 10
  • S. G. Peng and S. M. Zhu, Periodic solutions for $p$-Laplacian Rayleigh equations with a deviating argument , Nonlinear Anal., 67 (2007), 138–146 \ref\key 11
  • G. Q. Wang, A priori bounds for periodic solutions of a delay Rayleigh equation , Appl. Math. Lett., 12 (1999), 41–44 \ref\key 12
  • M. R. Zhang, Nonuniform nonresonance at the first eigenvalue of the $p$-Laplacian , Nonlinear Anal., 29 (1997), 41–51 \ref\key 13
  • Y. L. Zhu and S. P. Lu, Periodic solutions for $p$-Laplacian neutral functional differential equation with multiple deviating arguments , J. Math. Anal. Appl., 336 (2007), 1357–1367