## Topological Methods in Nonlinear Analysis

### A critical fractional Laplace equation in the resonant case

#### Abstract

In this paper we complete the study of the following non-local fractional equation involving critical nonlinearities $$\begin{cases} (-\Delta)^s u - {\lambda}u = |u|^{2^* -2}u \; \mathrm{in} \; \Omega, \\ u=0 \; \mathrm{in} \; \mathbb{R}^n \setminus \Omega, \end{cases}$$ started in the recent papers [13], [17]-[19]. Here $s\in (0,1)$ is a fixed parameter, $(-\Delta )^s$ is the fractional Laplace operator, $\lambda$ is a positive constant, $2^*=2n/(n-2s)$ is the fractional critical Sobolev exponent and $\Omega$ is an open bounded subset of $\mathbb R^n$, $n> 2s$, with Lipschitz boundary. Aim of this paper is to study this critical problem in the special case when $n\not=4s$ and $\lambda$ is an eigenvalue of the operator $(-\Delta)^s$ with homogeneous Dirichlet boundary datum. In this setting we prove that this problem admits a non-trivial solution, so that with the results obtained in [13], [17]-[19], we are able to show that this critical problem admits a nontrivial solution provided

$\bullet$ $n> 4s$ and $\lambda> 0$,

$\bullet$ $n=4s$ and $\lambda> 0$ is different from the eigenvalues of $(-\Delta)^s$,

$\bullet$ $2s< n< 4s$ and $\lambda> 0$ is sufficiently large.

In this way we extend completely the famous result of Brezis and Nirenberg (see [4], [5], [9], [23]) for the critical Laplace equation to the non-local setting of the fractional Laplace equation.

#### Article information

Source
Topol. Methods Nonlinear Anal., Volume 43, Number 1 (2014), 251-267.

Dates
First available in Project Euclid: 11 April 2016

https://projecteuclid.org/euclid.tmna/1460381558

Mathematical Reviews number (MathSciNet)
MR3237009

Zentralblatt MATH identifier
06700752

#### Citation

Servadei, Raffaella. A critical fractional Laplace equation in the resonant case. Topol. Methods Nonlinear Anal. 43 (2014), no. 1, 251--267. https://projecteuclid.org/euclid.tmna/1460381558

#### References

• A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory andapplications , J. Funct. Anal., 14, 349–381 (1973) \ref\key 2
• G. Arioli, F. Gazzola, H.-Ch. Grunau and E. Sassone, The second bifurcation branch for radial solutions of the Brezis–Nirenberg problem in dimension four , NoDEA Nonlinear Differential Equations Appl., 15 , 69–90 (2008) \ref\key 3
• B. Barrios, E. Colorado, A. De Pablo and U. Sanchez, On some critical problems for thefractional Laplacian operator , J. Differential Equations, 252 (2012), 6133–6162 \ref\key 4
• H. Brezis and L. Nirenberg, Positive solutionsof nonlinear elliptic equations involving critical Sobolev exponents , Comm. Pure Appl. Math., 36 , 437–477 (1983) \ref\key 5
• A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent , Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985) \ref\key 6
• A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives , J. Math. Anal. Appl., 295 , 225–236 (2004) \ref\key 7
• E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces , Bull. Sci. Math., 136 , 521–573 (2012) \ref\key 8
• F. Gazzola and H.-Ch. Grunau, On the role of space dimension $n=2+2\sqrt 2$ in the semilinear Brezis–Nirenberg eigenvalue problem , Analysis (Munich), 20 , 395–399 (2000) \ref\key 9
• F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations , Adv. Differential Equations, 2 , 555–572 (1997) \ref\key 10
• O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques , Mathématiques & Applications, Springer–Verlag, Paris (1993) \ref\key 11
• P.H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 , 215–223 (1978) \ref\key 12 ––––, Minimax methods in critical point theory with applications to differential equations , CBMS Reg. Conf. Ser. Math., 65 , American Mathematical Society Providence, RI (1986) \ref\key 13
• R. Servadei, The Yamabe equation in a non-local setting , Adv. Nonlinear Anal., 2 (2013), 235–270 \ref\key 14
• R. Servadei and E. Valdinoci, Lewy–Stampacchia type estimates for variational inequalities driven by (non)local operators , Rev. Mat. Iberoam., 29 (2013), 1091–1126 \ref\key 15 ––––, Mountain Pass solutionsfor non-local elliptic operators , J. Math. Anal. Appl., 389 , 887–898 (2012) \ref\key 16 ––––, Variational methods for non-local operators of elliptic type , Discrete Contin. Dyn. Syst., 33 (2013), 2105–2137 \ref\key 17
• R. Servadei and E. Valdinoci, The Brezis–Nirenberg result for the fractional Laplacian , to appear, Trans. Amer. Math. Soc. \ref\key 18 ––––, A Brezis–Nirenberg result for non-local critical equations in low dimension , Commun. Pure Appl. Anal., 12 (2013), 2445–2464 \ref\key 19 ––––, Fractional Laplacian equations with critical Sobolev exponent , preprint. http: //www.ma.utexas.edu/mp$\_$arc-bin/mpa?yn=12-58 \ref\key 20
• M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 , Springer Verlag, Berlin–Heidelberg (1990) \ref\key 21
• J. Tan, The Brezis–Nirenberg type probleminvolving the squareroot of the Laplacian , Calc. Var. Partial Differential Equations, 36 , 21–41 (2011) \ref\key 22
• M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equationsand their Applications, 24 , Birkhäuser, Boston (1996) \ref\key 23
• D. Zhang, On multiple solutions of $\Delta u+\lambda u+|u|^{4/(n-2)}u=0$ , Nonlinear Anal., 13 , 353–372 (1989)