Topological Methods in Nonlinear Analysis

The effect of diffusion on critical quasilinear elliptic problems

Renato José de Moura and Marcos Montenegro

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We discuss the role of the diffusion coefficient $a(x)$ on the existence of a positive solution for the quasilinear elliptic problem involving critical exponent $$ \begin{cases} - {\rm div}( a(x) |\nabla u|^{p-2} \nabla u) = u^{p^* - 1} + \lambda u^{p-1} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases} $$ where $\Omega$ is a smooth bounded domain in $\mathbb R^n$, $n \geq 2$, $1 < p < n$, $p^* = np/(n-p)$ is the critical exponent from the viewpoint of Sobolev embedding, $\lambda$ is a real parameter and $a\colon \overline{\Omega} \rightarrow \mathbb R$ is a positive continuous function. We prove that if the function $a(x)$ has an interior global minimum point $x_0$ of order $\sigma$, then the range of values $\lambda$ for which the problem above has a positive solution relies strongly on $\sigma$. We discover in particular that the picture changes drastically from $\sigma > p$ to $\sigma \leq p$. Some sharp answers are also provided.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 43, Number 2 (2014), 517-534.

Dates
First available in Project Euclid: 11 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1460381521

Mathematical Reviews number (MathSciNet)
MR3236983

Zentralblatt MATH identifier
1371.35120

Citation

de Moura, Renato José; Montenegro, Marcos. The effect of diffusion on critical quasilinear elliptic problems. Topol. Methods Nonlinear Anal. 43 (2014), no. 2, 517--534. https://projecteuclid.org/euclid.tmna/1460381521


Export citation

References

  • B. Abdellaoui, E. Colorado and I. Peral, Some improved Caffarelli–Kohn–Nirenberg inequalities , Calc. Var. Partial Differential Equations, 23 (2005), 327–345 \ref\key 2
  • G. Arioli and F. Gazzola, Some results on $p$-Laplace equations with a critical growth term , Differential Integral Equations, 11 (1998), 311–326 \ref\key 3
  • T. Aubin, Problèmes isopérimétriques et espaces de Sobolev , J. Differential Geom., 11 (1976), 573–598 \ref\key 4
  • T. Bartsch and M. Willem, Some critical minimization problems for functions of bounded variations , J. Funct. Anal., 259 (2010), 3025–3035 \ref\key 5
  • V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x)u=u^{(N+2)/(N-2)} \in \R^N$ , J. Funct. Anal., 88 (1990), 90–117 \ref\key 6
  • I. Birindelli and F. Demengel, Existence of solutions for semilinear equations involving the $p$-Laplacian: the non coercive case , Calc. Var. Partial Differential Equations, 20 , 343–366 (2004) \ref\key 7
  • H. Brezis, Some variational problems with lack of compactness , Nonlinear Functional Analysis and its Applications, Berkeley, 1983, Proc. Symp. Pure Math., 45 (F. Browder, ed.), Amer. Math. Soc. (1986), 165–201 \ref\key 8
  • H. Brezis and E. Lieb, Sobolev inequalities with remainder terms , J. Funct. Anal., 62 (1985), 73–86 \ref\key 9
  • H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents , Comm. Pure Appl. Math., 36 (1983), 437-477 \ref\key 10
  • L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Mathematica, 53 (1984), 259–275 \ref\key 11
  • A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 463-470. \ref\key 12
  • J. Ceccon and M. Montenegro, Compactness results for divergence type nonlinear elliptic equations, Ann. Mat. Pura Appl., 188 (2009), 653–677 \ref\key 13
  • K.S. Chou and C.W. Chu, On the best constant for a weighted Sobolev–Hardy inequality, J. London Math. Soc., 2 (1993), 137–151 \ref\key 14
  • S. De Valeriola and M. Willem, On some quasilinear elliptic problems, Adv. Nonlinear Stud., 9 (2009), 825–836 \ref\key 15
  • M. Degiovanni and S. Lancelotti, Linking solutions for $p$-Laplace equations with nonlinearity at critical growth , J. Funct. Anal. 256 (2009), 3643–3659 \ref\key 16
  • M. Degiovanni, A. Musesti and M. Squassina, On the regularity of solutions in the Pucci–Serrin identity , Calculus of Variations and \romPDEs, 18 (2003), 317–334 \ref\key 17
  • P. Drábek and S. Pohozaev, Positive solutions for the $p$-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703–726 \ref\key 18
  • H. Egnell, Semilinear elliptic equations involving critical Sobolev exponents, Arch. Rational Mech. Anal., 104 (1988), 27–56 \ref\key 19 ––––, Existence and nonexistence results for $m$-Laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal., 104 (1988), 57–77 \ref\key 20
  • J.F. Escobar, Positive solutions for some semilinear elliptic equations with critical Sobolev exponents, Comm. Pure Appl. Math., 40 (1987), 623–657 \ref\key 21
  • J. Garcia Azorero and I. Peral Alonso, Existence and nonuniqueness for the $p$-Laplacian: nonlinear eigenvalues, Comm. Partial Differential Equations, 12 (1987), 1389–1430 \ref\key 22
  • F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations, Adv. Differential Equations, 2 (1997), 555–572 \ref\key 23
  • Y. Ge, M. Musso and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains, Comm. Partial Differential Equations, 35 (2010), 1419–1457 \ref\key 24
  • M. Grossi, Radial solutions for the Brezis–Nirenberg problem involving large nonlinearities, J. Funct. Anal., 254 (2008), 2995–3036 \ref\key 25
  • M. Guedda and L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), 879–902 \ref\key 26
  • R. Hadiji and H. Yazidi, Problem with critical Sobolev exponent and with weight, Chin. Ann. Math. Ser. B, 28 (2007), 327–352 \ref\key 27
  • G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities , Cambridge University Press (1934) \ref\key 28
  • I. Il'yasov, On positive solutions of indefinite elliptic equations, C.R. Acad. Sci. Paris, 332 (2001), 1–6 \ref\key 29
  • P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. Part \romI, Rev. Mat. Iberoamericano, 1.1 (1985), 145–201 \ref\key 30
  • C. Mercuri and M. Willem, A global compactness result for the $p$-Laplacian involving critical nonlinearities, Discrete Contin. Dynam. Syst. A, 28 (2010), 469–493 \ref\key 31
  • M. Montenegro and R.J. Moura, On the influence of second order uniformly elliptic operators in nonlinear problems , Math. Nachr., to appear \ref\key 32
  • T. Ouyang, Positive solutions of semilinear elliptic equation $\Delta u + hu^{(n+2)/(n-2)} = 0$ , J. Differential Equations, 123 (1995), 230–259 \ref\key 33
  • D. Passaseo, Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u + a(x)u = u^{2^*-1}$ in bounded domains , Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 185–227 \ref\key 34
  • P. Pucci and J. Serrin, A general variational identity, Indiana Univ. J., 35 (1986), 681–703 \ref\key 35
  • P. Pucci, J. Serrin and H. Zou, A strong maximum principle and a compact support principle for singular elliptic inequalities , J. Math. Pures Appl., 78 (1999), 769–789 \ref\key 36
  • M. Struwe, Variational Methods and Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer–Verlag, Berlin (1990) \ref\key 37
  • G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976), 353–372 \ref\key 38
  • M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Birhäuser (1996) \ref\key 39
  • B. Xuan, The solvability of quasilinear Brezis–Nirenberg-type problems with singular weights , Nonlinear Anal. 62 (2005), 703–725 \ref\key 40, A priori estimate for a family of semi-linear elliptic equations with critical nonlinearity , J. Differential Equations, 247 (2009), 1334–1353