Topological Methods in Nonlinear Analysis

Existence of solutions for singularly perturbed Hamiltonian elliptic systems with nonlocal nonlinearities

Minbo Yang and Yuanhong Wei

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In the present paper we study singularly perturbed Hamiltonian elliptic systems with nonlocal nonlinearities $$ \begin{cases} \displaystyle -\varepsilon^2\Delta u +V(x)u =\bigg(\int_{\mathbb{R}^N} \frac{|z|^{p}}{|x-y|^{\mu}}\,dy\bigg)|z|^{p-2}u, \\ \displaystyle -\varepsilon^2\Delta v +V(x)v =-\bigg(\int_{\mathbb{R}^N} \frac{|z|^{p}}{|x-y|^{\mu}}\,dy\bigg)|z|^{p-2}v, \end{cases} $$ where $z=(u,v)\in H^1(\mathbb{R}^N,\mathbb{R}^2)$, $V(x)$ is a continuous real function on $\mathbb{R}^N$, $0< \mu< N$ and $2-{\mu}/{N}< p< (2N-\mu)/(N-2)$. Under suitable assumptions on the potential $V(x)$, we can prove the existence of solutions for small parameter $\varepsilon$ by variational methods. Moreover, if $N> 2$ and $2+(2-\mu)/(N-2)< p< (2N-\mu)/(N-2)$ then the solutions $z_\varepsilon\to 0$ as the parameter $\varepsilon\to 0$.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 43, Number 2 (2014), 385-402.

Dates
First available in Project Euclid: 11 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1460381514

Mathematical Reviews number (MathSciNet)
MR3236976

Zentralblatt MATH identifier
1362.35135

Citation

Yang, Minbo; Wei, Yuanhong. Existence of solutions for singularly perturbed Hamiltonian elliptic systems with nonlocal nonlinearities. Topol. Methods Nonlinear Anal. 43 (2014), no. 2, 385--402. https://projecteuclid.org/euclid.tmna/1460381514


Export citation

References

  • N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part , Math. Z., 248 (2004), 423–443 \ref\key 2
  • C.O. Alves, P. Carrião and O. Miyagaki, On the existence of positive solutions of a perturbed Hamiltonian system in $\Bbb R^N$ , J. Math. Anal. Appl., 276 (2002), 673–690 \ref\key 3
  • C.O. Alves and S.H.M. Soares, Singularly perturbed elliptic systems , Nonlinear Anal., 64 (2006), 109–129 \ref\key 4 ––––, On existence and concentration of solutions for a class of gradient systems , NoDEA, 12 (2005), 437–457 \ref\key 5
  • C.O. Alves, J. Yang and S.H.M. Soares, On existence and concentration of solutions for a class of Hamiltonian systems in $\Bbb R^N$ , Adv. Nonlinear Studies, 3 (2003), 161–180 \ref\key 6
  • A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations , Arch. Ration. Mech. Anal., 140 (1997), 285–300 \ref\key 7
  • A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications , J. Funct. Anal., 14 (1973), 349–381 \ref\key 8
  • A.I. Avila and J. Yang, Onthe existence and shape of least energy solutions for some elliptic systems , J. Differential Equations, 191 (2003), 348–376 \ref\key 9
  • T. Bartsch and Y. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory , Math. Nachr., 279 (2006), 1267–1288 \ref\key 10
  • H. Berestycki and P.L. Lions, Nonlinear scalar field equations. \romI. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313–345 \ref\key 11
  • L. Bergé and A. Couairon, Nonlinear propagation of self-guided ultra-short pulses in ionized gases , Phys. Plasmas, 7 (2000), 210–230 \ref\key 12
  • B. Buffoni, L. Jeanjean and C.A. Stuart, Existence of a nontrivial solution to a strongly indefinite semilinear equation , Proc. Amer. Math. Soc., 119 (1993), 179–186 \ref\key 13
  • J. Byeon and Z.Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations \romII, Calc. Var. Partial Differential Equations, 18 (2003), 207–219 \ref\key 14
  • F. Dalfovo et al., Theory of Bose–Einstein condensation in trapped gases , Rev. Mod. Phys., 71 (1999), 463–512 \ref\key 15
  • D.G. de Figueiredo and P. Felmer, On superquadratic elliptic systems , Trans. Amer. Math. Soc., 343 (1994), 99–116 \ref\key 16
  • D.G. de Figueiredo and J.F. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems , Nonlinear Anal., 33 (1998), 211–234 \ref\key 17
  • M. del Pino and P. Felmer, Multipeak bound states of nonlinear Schrödinger equations , Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 127–149 \ref\key 18 ––––, Local mountain passes for semilinear elliptic problems in unbounded domains , Calc. Var. Partial Differential Equations, 4 (1996), 121–137 \ref\key 19 ––––, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method , Math. Ann., 324 (2002), 1–32 \ref\key 20
  • Y.H. Ding, Variational methods for strongly indefinite problems , Interdisciplinary Mathematical Sciences, 7 , World Scientific, New Jersey, London, Singapore (2007) \ref\key 21
  • Y.H. Ding and F.H. Lin, Solutions of perturbed Schrödinger equations with critical nonlinearity , Calc. Var. Partial Differential Equations, 30 (2007), 231–249 \ref\key 22
  • Y.H. Ding and J.C. Wei, Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials , J. Func. Anal., 251 (2007), 546–572 \ref\key 23
  • A. Floer and A. Weinstein, Nonspreading wave pachets for the cubic Schrödinger with a bounded potential , J. Funct. Anal., 69 (1986), 397–408 \ref\key 24
  • J. Hulshof and R. van der Vorst, Differential systems with strongly indefinite variational structure , J. Funct. Anal., 114 (1993), 32–58 \ref\key 25
  • E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, Rhode Island (2001) \ref\key 26
  • P.L. Lions, The Choquard equation and related questions , Nonlinear Anal., 4 (1980), 1063–1072 \ref\key 27
  • A.G. Litvak, Self-focusing of powerful light beams by thermal effects , JETP Lett., 4 (1966), 230–232 \ref\key 28
  • P. Rabinowitz, On a class of nonlinear Schrödinger equations , Z. Angew. Math. Phys., 43 (1992), 270–291 \ref\key 29
  • M. Ramos and S.H.M. Soares, On the concentration of solutions of singularly perturbed Hamiltonian systems in $\Bbb R^N$ , Port. Math., 63 (2006), 157–171 \ref\key 30
  • B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in $\Bbb R^N$ , Adv. Differential Equations, 5 (2000), 1445–1464 \ref\key 31 ––––, Standing wave solutions of the nonlinear Schrödinger equations in $\Bbb R^N$ , Ann. Mat. Pura Appl. (4), 183 (2002), 73–83 \ref\key 32
  • B. Sirakov and S. Soares, Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type , Trans. Amer. Math. Soc., 362 (2010), 5729–5744 \ref\key 33
  • J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger–Newton equations , J. Math. Phys., 50 (2009)