Topological Methods in Nonlinear Analysis

Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball

Isabel Coelho, Chiara Corsato, and Sabrina Rivetti

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation $$ \begin{cases} \displaystyle -{\rm div}\bigg( \frac{\nabla v} {\sqrt{1 - |\nabla v|^2}}\bigg)= f(|x|,v) &\quad \text{in } B_R, \\ v=0 & \quad \text{on } \partial B_R, \end{cases} $$ where $B_R$ is a ball in $\mathbb{R}^N$ ($N\ge 2$). According to the behaviour of $f=f(r,s)$ near $s=0$, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 44, Number 1 (2014), 23-39.

Dates
First available in Project Euclid: 11 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1460381468

Mathematical Reviews number (MathSciNet)
MR3289006

Zentralblatt MATH identifier
1366.35029

Citation

Coelho, Isabel; Corsato, Chiara; Rivetti, Sabrina. Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball. Topol. Methods Nonlinear Anal. 44 (2014), no. 1, 23--39. https://projecteuclid.org/euclid.tmna/1460381468


Export citation

References

  • A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications , J. Functional Analysis, 14 (1973), 349–381 \ref\key 2
  • R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature , Comm. Math. Phys., 87 yr 1982/83 , 131–152 \ref\key 3
  • C. Bereanu, P. Jebelean and J. Mawhin, Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces , Proc. Amer. Math. Soc., 137 (2009), 161–169 \ref\key 4
  • C. Bereanu, P. Jebelean and P. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space , J. Funct. Anal., 264 (2013), 270–287 \ref\key 5
  • C. Bereanu, P. Jebelean and P. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space , J. Funct. Anal., 265 (2013), 644–659 \ref\key 6
  • D. Bonheure, J.M. Gomes and L. Sanchez, Positive solutions of a second-order singular ordinary differential equation , Nonlinear Anal., 61 (2005), 1383–1399 \ref\key 7
  • I. Coelho, C. Corsato, F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation , Adv. Nonlinear Stud., 12 (2012), 621–638 \ref\key 8
  • C. Corsato, F. Obersnel, P. Omari and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space , J. Math. Anal. Appl. (2013), 227–239 \ref\key 9
  • C. Corsato, F. Obersnel, P. Omari and S. Rivetti, On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space , Discrete Contin. Dyn. Syst. (2013), 159–169 \ref\key 10
  • C. Gerhardt, $H$-surfaces in Lorentzian manifolds , Comm. Math. Phys., 89 (1983), 523–553 \ref\key 11
  • B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle , Commun. Math. Phys., 68 (1979), 209–243 \ref\key 12
  • J. Mawhin, Radial solutions of Neumann problem for periodic perturbations of the mean extrinsic curvature operator , Milan J. Math., 79 (2011), 95–112