Topological Methods in Nonlinear Analysis
- Topol. Methods Nonlinear Anal.
- Volume 45, Number 2 (2015), 363-384.
Global exponential stability and existence of anti-periodic solutions to impulsive Cohen-Grossberg neural networks on time scales
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
By using the method of coincidence degree theory and Lyapunov functions, some new criteria are established for the existence and global exponential stability of anti-periodic solutions to impulsive Cohen-Grossberg neural networks on time scales. Our results are new even if the time scale $\mathbb{T}=\mathbb{R}$ or $\mathbb{Z}$. Finally, an example is given to illustrate our results.
Article information
Source
Topol. Methods Nonlinear Anal., Volume 45, Number 2 (2015), 363-384.
Dates
First available in Project Euclid: 30 March 2016
Permanent link to this document
https://projecteuclid.org/euclid.tmna/1459343987
Digital Object Identifier
doi:10.12775/TMNA.2015.018
Mathematical Reviews number (MathSciNet)
MR3408827
Zentralblatt MATH identifier
1365.34126
Citation
Li, Yongkun; Zhang, Tianwei. Global exponential stability and existence of anti-periodic solutions to impulsive Cohen-Grossberg neural networks on time scales. Topol. Methods Nonlinear Anal. 45 (2015), no. 2, 363--384. doi:10.12775/TMNA.2015.018. https://projecteuclid.org/euclid.tmna/1459343987
References
- A.R. Aftabizadeh, S. Aizicovici and N.H. Pavel, On a class of second-order anti-periodic boundary value problems, J. Math. Anal. Appl. 171 (1992), 301–320. Mathematical Reviews (MathSciNet): MR1194081
Digital Object Identifier: doi:10.1016/0022-247X(92)90345-E - R. Agarwal, M. Bohner and A. Peterson, Inequalities on times cales: a survey, Math. Inequality Appl. 4 (4) (2001), 535–557. Mathematical Reviews (MathSciNet): MR1859660
- C. Bai, Stability analysis of Cohen–Grossberg \romBAM neural networks with delays and impulses, Chaos Solitons Fractals 35 (2008), 263–267. Mathematical Reviews (MathSciNet): MR2357001
- M. Bohner, M. Fan and J. Zhang, Existence of periodic solutions in predator-prey and competition dynamic systems, Nonlinear Anal. Real World Appl. 7 (2006), 1193–1204. Mathematical Reviews (MathSciNet): MR2260908
Digital Object Identifier: doi:10.1016/j.nonrwa.2005.11.002 - M. Bohner and A. Peterson, Dynamic Equations on Time Scales, an Introduction with Applications, Boston, Birkhäuser, 2001. Mathematical Reviews (MathSciNet): MR1843232
- H.L. Chen, Antiperiodic wavelets, J. Comput. Math. 14 (1996), 32–39. Mathematical Reviews (MathSciNet): MR1375147
- Y. Chen, J.J. Nieto and D. O'Regan, Anti-periodic solutions for fully nonlinear first-order differential equations, Math. Comput. Modelling 46 (2007), 1183–1190. Mathematical Reviews (MathSciNet): MR2376702
Digital Object Identifier: doi:10.1016/j.mcm.2006.12.006 - Y.Q. Chen, Anti-periodic solutions for semilinear evolution equations, J. Math. Anal. Appl. 315 (2006), 337–348. Mathematical Reviews (MathSciNet): MR2196551
Digital Object Identifier: doi:10.1016/j.jmaa.2005.08.001 - Z. Chen, D. Zhao and X. Fu, Discrete analogue of high-order periodic Cohen–Grossberg neural networks with delay, Appl. Math. Comput. 214 (2009), 210–217. Mathematical Reviews (MathSciNet): MR2541060
Digital Object Identifier: doi:10.1016/j.amc.2009.03.083 - M.A. Cohen and S. Grossberg, Stability and global pattern formulation and memory storage by competitive neural networks, IEEE Trans. Syst. Man Cybern. 13 (1983), 815–826. Mathematical Reviews (MathSciNet): MR730500
Digital Object Identifier: doi:10.1109/TSMC.1983.6313075 - F.J. Delvos and L. Knoche, Lacunary interpolation by antiperiodic trigonometric polynomials, BIT 39 (1999), 439–450.
- J.Y. Du, H.L. Han and G.X. Jin, On trigonometric and paratrigonometric Hermite interpolation, J. Approx. Theory 131 (2004), 74–99. Mathematical Reviews (MathSciNet): MR2103835
Digital Object Identifier: doi:10.1016/j.jat.2004.09.005 - G. Guseinov, Integration on time scales, J. Math. Anal. Appl. 285 (2003), 107–127. Mathematical Reviews (MathSciNet): MR2000143
Digital Object Identifier: doi:10.1016/S0022-247X(03)00361-5 - J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. 81 (1984), 3088–3092.
- E.R. Kaufmann and Y.N. Raffoul, Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. Math. Anal. Appl. 319 (2006), 315–325. Mathematical Reviews (MathSciNet): MR2217863
Digital Object Identifier: doi:10.1016/j.jmaa.2006.01.063 - V. Lakshmikantham and, A.S. Vatsala, Hybird systems on time scales, J. Comput. Appl. Math. 141 (2002), 227–235. Mathematical Reviews (MathSciNet): MR1908840
Digital Object Identifier: doi:10.1016/S0377-0427(01)00448-4 - T. Li and S. Fei, Stability analysis of Cohen-Grossberg neural networks with time-varying and distributed delays, Neurocomputing 71 (2008), 1069–1081.
- T. Li, S. Fei, Y. Guo and Q. Zhu, Stability analysis on Cohen–Grossberg neural networks with both time-varying and continuously distributed delays, Nonlinear Anal. Real World Appl. 10 (2009), 2600–2612. Mathematical Reviews (MathSciNet): MR2508470
Digital Object Identifier: doi:10.1016/j.nonrwa.2008.04.003 - Y.K. Li, Existence and stability of periodic solutions for Cohen–Grossberg neural networks with multiple delays, Chaos Solitons Fractals 20 (2004), 459–466. Mathematical Reviews (MathSciNet): MR2024869
Digital Object Identifier: doi:10.1016/S0960-0779(03)00406-5 - Y.K. Li, X.R. Chen and L. Zhao, Stability and existence of periodic solutions to delayed Cohen–Grossberg BAM neural networks with impulses on time scales, Neurocomputing 72 (2009), 1621–1630.
- Y.K. Li and X. Fan, Existence and globally exponential stability of almost periodic solution for Cohen–Grossberg \romBAM neural networks with variable coefficients, Appl. Math. Modelling 33 (2009), 2114–2120. Mathematical Reviews (MathSciNet): MR2488268
Digital Object Identifier: doi:10.1016/j.apm.2008.05.013 - Y.K. Li and L. Yang, Anti-periodic solutions for Cohen–Grossberg neural networks with bounded and unbounded delays, Commun. Nonlinear Sci. Numer. Simulat. 14 (2009), 3134–3140. Mathematical Reviews (MathSciNet): MR2502317
Digital Object Identifier: doi:10.1016/j.cnsns.2008.12.002 - X.F. Liao, C.D. Li and K. Wong, Criteria for exponential stability of Cohen–Grossberg neural networks, Neural Networks 17 (2004), 1401–1414.
- J.L. Mawhin, Topological degree methods in nonlinear boundary value problems, CBMS Regional Conference Series in Mathematics, vol. 40, Amer. Math. Soc., Providence, RI, 1979. Mathematical Reviews (MathSciNet): MR525202
- Y. Meng, L. Huang and Z. Yuan, Exponential stability analysis of Cohen–Grossberg neural networks with time-varying delays, Acta Math. Appl. Sin. English Ser. 28 (2012), 181–192. Mathematical Reviews (MathSciNet): MR2864364
Digital Object Identifier: doi:10.1007/s10255-012-0133-y - D. O'Regan, Y.J. Cho and Y.Q. Chen, Topological Degree Theory and Application, Taylor & Francis Group, Boca Raton, London, New York, 2006.
- H. Okochi, On the existence of periodic solutions to nonlinear abstract equations, J. Math. Soc. Japan 40 (1988), 541–553. Mathematical Reviews (MathSciNet): MR945351
Digital Object Identifier: doi:10.2969/jmsj/04030541
Project Euclid: euclid.jmsj/1230129899 - ––––, On the existence of anti-periodic solutions to nonlinear parabolic equations in noncylindrical domains, Nonlinear Anal. 14 (1990), 771–783. Mathematical Reviews (MathSciNet): MR1049120
- J.Y. Shao, Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays, Phys. Lett. A 372 (2008), 5011–5016.
- R. Wu, An anti-periodic LaSalle oscillation theorem, Appl. Math. Lett. 21 (2008), 928–933. Mathematical Reviews (MathSciNet): MR2436526
Digital Object Identifier: doi:10.1016/j.aml.2007.10.004 - Z. Yang and D. Xu, Impulsive effects on stability of Cohen–Grossberg neural networks with variable delays, Appl. Math. Comput. 177 (2006), 63–78. Mathematical Reviews (MathSciNet): MR2234497
Digital Object Identifier: doi:10.1016/j.amc.2005.10.032 - Z.C. Yang and D.Y. Xu, Impulsive effects on stability of Cohen-Grossberg neural networks with variable delays, Appl. Math. Comput. 177 (2006), 63–78. Mathematical Reviews (MathSciNet): MR2234497
Digital Object Identifier: doi:10.1016/j.amc.2005.10.032 - Y. Yin, Monotone iterative technique and quasilinearization for some anti-periodic problems, Nonlinear World 3 (2) (1996), 253–266. Mathematical Reviews (MathSciNet): MR1390017
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Antiperiodic Solutions to Impulsive Cohen-Grossberg Neural Networks with Delays on Time Scales
Wang, Yanqin and Han, Maoan, Abstract and Applied Analysis, 2013 - Periodic Oscillation of Fuzzy Cohen-Grossberg Neural Networks with Distributed Delay and Variable Coefficients
Xiang, Hongjun and Cao, Jinde, Journal of Applied Mathematics, 2008 - Dynamics of Cohen-Grossberg Neural Networks with Mixed Delays and Impulses
Yang, Xinsong, Huang, Chuangxia, Zhang, Defei, and Long, Yao, Abstract and Applied Analysis, 2008
- Antiperiodic Solutions to Impulsive Cohen-Grossberg Neural Networks with Delays on Time Scales
Wang, Yanqin and Han, Maoan, Abstract and Applied Analysis, 2013 - Periodic Oscillation of Fuzzy Cohen-Grossberg Neural Networks with Distributed Delay and Variable Coefficients
Xiang, Hongjun and Cao, Jinde, Journal of Applied Mathematics, 2008 - Dynamics of Cohen-Grossberg Neural Networks with Mixed Delays and Impulses
Yang, Xinsong, Huang, Chuangxia, Zhang, Defei, and Long, Yao, Abstract and Applied Analysis, 2008 - Periodic Solutions of a Cohen-Grossberg-Type BAM Neural Networks with Distributed
Delays and Impulses
Liu, Qiming and Xu, Rui, Journal of Applied Mathematics, 2012 - Existence and Global Exponential Stability of Periodic Solution to Cohen-Grossberg BAM Neural Networks with Time-Varying Delays
Liu, Kaiyu, Zhang, Zhengqiu, and Wang, Liping, Abstract and Applied Analysis, 2012 - Stability Analysis for Impulsive Stochastic Reaction-Diffusion Differential System and Its Application to Neural Networks
Du, Yanke, Li, Yanlu, and Xu, Rui, Journal of Applied Mathematics, 2013 - Stability of Impulsive Cohen-Grossberg Neural Networks with Time-Varying Delays and Reaction-Diffusion Terms
Huang, Jinhua, Liu, Jiqing, and Zhou, Guopeng, Abstract and Applied Analysis, 2013 - Delay-Dependent Dynamics of Switched Cohen-Grossberg Neural Networks with Mixed Delays
Wang, Peng, Hu, Haijun, Jun, Zheng, Tan, Yanxiang, and Liu, Li, Abstract and Applied Analysis, 2013 - Almost Periodic Solutions for Neutral-Type BAM Neural Networks with Delays on Time Scales
Li, Yongkun and Yang, Li, Journal of Applied Mathematics, 2013 - Periodic Solutions for Shunting Inhibitory Cellular Neural Networks of Neutral Type with Time-Varying Delays in the Leakage Term on Time Scales
Li, Yongkun, Wang, Lei, and Fei, Yu, Journal of Applied Mathematics, 2014