Topological Methods in Nonlinear Analysis

Functions and vector fields on $C(\mathbb{C}P^n)$-singular manifolds

Alice K.M. Libardi and Vladimir V. Sharko

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper we study functions and vector fields with isolated singularities on a $C(\mathbb{C}P^n)$-singular manifold. In general, a $C(\mathbb{C}P^n)$-singular manifold is obtained from a smooth $(2n+1)$-manifold with boundary which is a disjoint union of complex projective spaces $\mathbb{C}P^n \cup\ldots \cup\mathbb{C}P^n$ and subsequent capture of the cone over each component $\mathbb{C}P^n$ of the boundary. We calculate the Euler characteristic of a compact $C(\mathbb{C}P^n)$-singular manifold $M^{2n+1}$ with finite isolated singular points. We also prove a version of the Poincaré-Hopf Index Theorem for an almost smooth vector field with finite number of zeros on a $C(\mathbb{C}P^n)$-singular manifold.

Article information

Topol. Methods Nonlinear Anal., Volume 46, Number 2 (2015), 697-715.

First available in Project Euclid: 21 March 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Libardi, Alice K.M.; Sharko, Vladimir V. Functions and vector fields on $C(\mathbb{C}P^n)$-singular manifolds. Topol. Methods Nonlinear Anal. 46 (2015), no. 2, 697--715. doi:10.12775/TMNA.2015.081.

Export citation


  • M. Agoston, On handle decompositions and diffeomorphisms, Trans. Amer.Math. Soc. 137 (1969), 21–26.
  • M.A. Aguilar, J.A. Seade and A. Verjovsky, Indices of vector fields and topological invariants of real analytic singularities, J. Reine and Angew. Math. 504 (1998), 159–176.
  • D. Asimov, Round handle and non-singular Morse–Smale flows, Ann. Math. 102 (1975), no. 1, 41–54.
  • R. Bott Lecture on Morse theory, old and new, Bull. Amer.Math. Soc. 7 (1982), no. 2, 331–358.
  • J.-P. Brasselet, J. Seade and T. Suwa, Vector Fields on Singular Varieties, Lecture Notes in Mathematics 2009 (1987).
  • W. Ebeling and S. Gusein-Zade, On the index of a vector field at an isolated singularity, The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun. 24, Amer. Math. Soc., Providence, RI, (1999), 141–152.
  • M. Goresky and R. MacPherson, Stratified Morse Theory Ergebnisse der Mathematic und ihre Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer–Verlag, Berlin, 1988.
  • H. King and Trotman, Poincaré–Hopf theorems on stratified set, Preprint 1996.
  • ––––, Poincaré–Hopf theorems on singular spaces, Proc. Lond. Math. Soc. (3) 108 (2014), no. 3, 682–703.
  • M. Kogan, Existence of perfect Morse functions on spaces with semi-free circle action, J. Sympletic Geom. 1 (2003), no. 3, 829–850.
  • J. Milnor, Lectures on the $h$-cobordism Theorem, Mathematics Notes, Princeton University Press 122 (1965).
  • D. Repovs and V. Sharko, Morse numbers, Ukrainian Math. J. 59 (2012), 559–570.
  • S. Sarkar, \em Oriented Cobordism on $CP^{2k+1}$, arXiv:1011.0554v3[mathAT] 21 Nov 2010.
  • M.-H. Schwartz, \em Classes caracteristiques définies par une stratification d'une variété analitique complexe, C.R. Acad. Sci. Paris 260 (1965), 3262–3264, 3535–3537.
  • ––––, \em Champs radiaux et préradiaux associés á une stratification, C.R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 6, 239–241.
  • ––––, \em Champs radiaux sur une stratification analitique, Travaux en Cours, 39, Hermann Paris, (1991).
  • J. Seade and T. Suwa, An adjunction formula for local complete intercections, Internal. J. Math. 9 (1998), no. 6.
  • V. Sharko, Functions on manifolds. Algebraic and topologic aspects, Amer. Math. Soc., vol. 131, 193, Providence, RI, (1993).