Topological Methods in Nonlinear Analysis
- Topol. Methods Nonlinear Anal.
- Volume 46, Number 2 (2015), 665-693.
Existence of solutions in the sense of distributions of anisotropic nonlinear elliptic equations with variable exponent
Mohamed Badr Benboubker, Houssam Chrayteh, Hassane Hjiaj, and Chihab Yazough
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
The aim of this paper is to study the existence of solutions in the sense of distributions for a strongly nonlinear elliptic problem where the second term of the equation $f$ is in $ W^{-1,\overrightarrow{p}'(\,\cdot\,)}(\Omega)$ which is the dual space of the anisotropic Sobolev $W_{0}^{1,\overrightarrow{p}(\,\cdot\,)}(\Omega)$ and later $f$ will be in $L^{1}(\Omega)$.
Article information
Source
Topol. Methods Nonlinear Anal., Volume 46, Number 2 (2015), 665-693.
Dates
First available in Project Euclid: 21 March 2016
Permanent link to this document
https://projecteuclid.org/euclid.tmna/1458588656
Digital Object Identifier
doi:10.12775/TMNA.2015.063
Mathematical Reviews number (MathSciNet)
MR3494963
Zentralblatt MATH identifier
1362.35130
Citation
Benboubker, Mohamed Badr; Chrayteh, Houssam; Hjiaj, Hassane; Yazough, Chihab. Existence of solutions in the sense of distributions of anisotropic nonlinear elliptic equations with variable exponent. Topol. Methods Nonlinear Anal. 46 (2015), no. 2, 665--693. doi:10.12775/TMNA.2015.063. https://projecteuclid.org/euclid.tmna/1458588656
References
- E. Azroul, A. Barbara, M.B. Benboubker and S. Ouaro, Renormalized solutions for a $p(x)$-Laplacian equation with Neumann nonhomogeneous boundary conditions and $L^{1}$-data, An. Univ. Craiova Ser. Mat. Inform. 40 (2013), no. 1, 9–22. Mathematical Reviews (MathSciNet): MR3078954
- E. Azroul, M.B. Benboubker and S. Ouaro, Entropy solutions for nonlinear nonhomogeneous Neumann problems involving the generalized $p(x)$-Laplace operator, J. Appl. Anal. Comput. 3 (2013), no. 2, 105–121. Mathematical Reviews (MathSciNet): MR3085748
- E. Azroul, M.B. Benboubker and M. Rhoudaf, On some p(x)-quasilinear problem with right-hand side measure, Math. Comput. Simul. 102 (2014), 117–130. Mathematical Reviews (MathSciNet): MR3212393
Digital Object Identifier: doi:10.1016/j.matcom.2013.09.009 - E. Azroul, H. Hjiaj and A. Touzani, Existence and Regularity of Entropy solutions For Strongly Nonlinear $p(x)$-elliptic equations, Electron. J. Differential Equations 68 (2013), 1–27.
- E. Azroul, C. Yazough and H. Redwane, Existence of solutions for some nonlinear elliptic unilateral problems with measure data, Electron. J. Qual. Theory Differ. Equ. (2013), No. 43, 1–21. Mathematical Reviews (MathSciNet): MR3090576
- M.B. Benboubker, E. Azroul and A. Barbara, Quasilinear elliptic problems with nonstandard growths, Electron. J. Differential Equations 62 (2011), 1–16.
- M.B. Benboubker, H. Chrayteh, M. El Moumni and H. Hjiaj, Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data, Acta Math. Sin. (Engl. Ser.) 31 (2015), 151–169. Mathematical Reviews (MathSciNet): MR3285953
Zentralblatt MATH: 06406346
Digital Object Identifier: doi:10.1007/s10114-015-3555-7 - M. Bendahmane, M. Chrif and S. El Manouni, An Approximation Result in Generalized Anisotropic Sobolev Spaces and Application, Z. Anal. Anwend. 30 (2011), no. 3, 341–353. Mathematical Reviews (MathSciNet): MR2819499
- L. Boccardo, F. Murat and J.P. Puel, Existence of Bounded Solutions for non linear elliptic unilateral problems, Ann. Mat. Pura Appl. (4) 152 (1988), 183–196.
- H. Chrayteh, Qualitative properties of eigenvectors related to multivalued operators and some existence results, J. Optim. Theory Appl. 155 (2012), 507–533. Mathematical Reviews (MathSciNet): MR2994058
Zentralblatt MATH: 1273.47097
Digital Object Identifier: doi:10.1007/s10957-012-0064-z - H. Chrayteh and J.M. Rakotoson, Eigenvalue problems with fully discontinuous operators and critical exponents, Nonlinear Anal. 73 (2010), 2036–2055. Mathematical Reviews (MathSciNet): MR2674183
- L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer–Verlag, Heidelberg, 2011.
- X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl. 262 (2001), no. 2, 749–760.
- X. L. Fan and D. Zhao, On the generalised Orlicz-Sobolev Space $W^{k,p(x)}(\Omega)$, J. Gansu Educ. College 12 (1) (1998), 1–6. Mathematical Reviews (MathSciNet): MR1655732
- P. Gwiazda, P. Minakowski and A. Świerczewska-Gwiazda, On the anisotropic Orlicz spaces applied in the problems of continuum mechanics, Discrete Contin. Dyn. Syst. Ser. S 6 (5) (2013), 1291–1306. Mathematical Reviews (MathSciNet): MR3039698
Zentralblatt MATH: 1260.35142
Digital Object Identifier: doi:10.3934/dcdss.2013.6.1291 - P. Gwiazda, P. Minakowski and A. Wróblewska, Elliptic problems in generalized Orlicz- -Musielak spaces, Cent. Eur. J. Math. 10 (6) (2012), 2019–2032.
- P. Gwiazda and A. Świerczewska-Gwiazda, On steady non-Newtonian fluids with growth conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal. 32 (1) (2008), 103–113.
- ––––, On non-Newtonian fluids with a property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci. 18(7) (2008), 1073–1092. Mathematical Reviews (MathSciNet): MR2435185
- P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci. 33 (2) (2010), 125–137.
- P. Gwiazda, P. Wittbold, A. Wróblewska and A. Zimmermann, Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differential Equations 253 (2) (2012), 635–666. Mathematical Reviews (MathSciNet): MR2921209
Digital Object Identifier: doi:10.1016/j.jde.2012.03.025 - P. Harjulehto and P. Hästö, Sobolev Inequalities for Variable Exponents Attaining the Values $1$ and $n,$ Publ. Mat. 52 (2008), no. 2, 347–363. Mathematical Reviews (MathSciNet): MR2436729
Zentralblatt MATH: 1163.46022
Digital Object Identifier: doi:10.5565/PUBLMAT_52208_05
Project Euclid: euclid.pm/1217964237 - E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer–Verlag, Berlin, Heidelberg, New York, 1965. Mathematical Reviews (MathSciNet): MR367121
- B. Kone, S. Ouaro and S. Traoré, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electronic J. Differential Equations 144 (2009), 1–11.
- J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthiers–Villars, Paris 1969. Mathematical Reviews (MathSciNet): MR259693
- M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687–698. Mathematical Reviews (MathSciNet): MR2376189
Zentralblatt MATH: 1135.35058
Digital Object Identifier: doi:10.1016/j.jmaa.2007.09.015 - A. Świerczewska-Gwiazda, Anisotropic parabolic problems with slowly or rapidly growing terms, Colloq. Math. 134 (1) (2014), 113–130. Mathematical Reviews (MathSciNet): MR3164940
Zentralblatt MATH: 1295.35246
Digital Object Identifier: doi:10.4064/cm134-1-5 - A. Wróblewska, Steady flow of non-Newtonian fluids-monotonicity methods in generalized Orlicz spaces, Nonlinear Anal. 72 (11) (2010), 4136–4147. Mathematical Reviews (MathSciNet): MR2606773
- D. Zhao, W.J. Qiang and X.L. Fan, On generalized Orlicz spaces $L^{p(x)}(\Omega)$, J. Gansu Sci. 9 (2) (1997), 1–7.
- V.V. Zhikov, On Lavrentiev's phenomenon, Russian J. Math. Phys. 3 (1995), 249–269.
- ––––, On some variational problem, Russian J. Math. Phys. 5 (1997), 105–116.
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Strongly Nonlinear $p(x)$-Elliptic Problems with
$L^1$-Data
Azroul, E., Barbara, A., and Hjiaj, H., African Diaspora Journal of Mathematics, 2014 - INFINITELY MANY SOLUTIONS FOR A CLASS OF DEGENERATE ANISOTROPIC ELLIPTIC PROBLEMS WITH VARIABLE EXPONENT
Boureanu, Maria-Magdalena, Taiwanese Journal of Mathematics, 2011 - Optimal regularity conditions for elliptic problems via $L^p_\delta$-spaces
Souplet, Philippe, Duke Mathematical Journal, 2005
- Strongly Nonlinear $p(x)$-Elliptic Problems with
$L^1$-Data
Azroul, E., Barbara, A., and Hjiaj, H., African Diaspora Journal of Mathematics, 2014 - INFINITELY MANY SOLUTIONS FOR A CLASS OF DEGENERATE ANISOTROPIC ELLIPTIC PROBLEMS WITH VARIABLE EXPONENT
Boureanu, Maria-Magdalena, Taiwanese Journal of Mathematics, 2011 - Optimal regularity conditions for elliptic problems via $L^p_\delta$-spaces
Souplet, Philippe, Duke Mathematical Journal, 2005 - Well-Posedness Result For a Nonlinear Elliptic Problem
Involving Variable Exponent and Robin Type Boundary Condition
Ouaro, S. and Tchousso, A., African Diaspora Journal of Mathematics, 2011 - Multiplicity theorems for resonant and superlinear nonhomogeneous elliptic equations
Papageorgiou, Nikolaos S. and Rădulescu, Vicenţiu D., Topological Methods in Nonlinear Analysis, 2016 - On the minimal solution for quasilinear degenerate elliptic equation and its blow-up
Horiuchi, Toshio and Kumlin, Peter, Journal of Mathematics of Kyoto University, 2004 - Limit behaviour of a class of nonlinear elliptic problems in infinite cylinders
Bruyère, Nicolas, Advances in Differential Equations, 2007 - EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR NONLOCAL $\overrightarrow{p}(x)$-LAPLACIAN PROBLEM
Afrouzi, G. A. and Mirzapour, M., Taiwanese Journal of Mathematics, 2014 - Regularity for solutions to nonlinear elliptic equations
Greco, Luigi, Moscariello, Gioconda, and Zecca, Gabriella, Differential and Integral Equations, 2013 - Elliptic problems involving natural growth in the gradient and general absorption terms
Abdelhamid, Haydar, Rocky Mountain Journal of Mathematics, 2018