Tohoku Mathematical Journal

Relative algebro-geometric stabilities of toric manifolds

Naoto Yotsutani and Bin Zhou

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper we study the relative Chow and $K$-stability of toric manifolds. First, we give a criterion for relative $K$-stability and instability of toric Fano manifolds in the toric sense. The reduction of relative Chow stability on toric manifolds will be investigated using the Hibert-Mumford criterion in two ways. One is to consider the maximal torus action and its weight polytope. We obtain a reduction by the strategy of Ono [34], which fits into the relative GIT stability detected by Székelyhidi. The other way relies on $\mathbb{C}^*$-actions and Chow weights associated to toric degenerations following Donaldson and Ross-Thomas [13, 36]. In the end, we determine the relative $K$-stability of all toric Fano threefolds and present counter-examples which are relatively $K$-stable in the toric sense but which are asymptotically relatively Chow unstable.

Article information

Source
Tohoku Math. J. (2), Volume 71, Number 4 (2019), 495-524.

Dates
First available in Project Euclid: 19 December 2019

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1576724790

Digital Object Identifier
doi:10.2748/tmj/1576724790

Mathematical Reviews number (MathSciNet)
MR4043922

Zentralblatt MATH identifier
07199976

Subjects
Primary: 53C55: Hermitian and Kählerian manifolds [See also 32Cxx]
Secondary: 14L24: Geometric invariant theory [See also 13A50] 14M25: Toric varieties, Newton polyhedra [See also 52B20]

Keywords
extremal metrics $K$-stability Chow stability toric manifold

Citation

Yotsutani, Naoto; Zhou, Bin. Relative algebro-geometric stabilities of toric manifolds. Tohoku Math. J. (2) 71 (2019), no. 4, 495--524. doi:10.2748/tmj/1576724790. https://projecteuclid.org/euclid.tmj/1576724790


Export citation

References

  • V. Batyrev, Troidal Fano 3-folds, Math. USSR-Izv. 19 (1982), 13–25. Izv. Akad. Nauk SSSR 45 (1981), 704–717.
  • V. V. Batyrev, On the classification of toric Fano 4-folds, Algebraic geometry, 9, J. Math. Sci. (New York) 94 (1999), 1021–1050.
  • V. Batyrev and E. Selivanova, Einstein-Kähler metrics on symmetric toric Fano manifolds, J. Reine Angew. Math. 512 (1999), 225–236.
  • R. Berman, K-stability of Q-Fano varieties admitting Kahler-Einstein metrics, Invent. Math. 203 (2016), 973–1025.
  • W. Bruns, B. Ichim, T. Römer and C. Söger, Normaliz. Algorithms for rational cones and affine monoids. Available at http://www.math.uos.de/normaliz.
  • E. Calabi, Extremal Kähler metrics, Seminar on differential geometry, pp. 259–290, Ann. of Math Stud. 102, Princeton Univ. Press, Princeton, N.J., 1982.
  • B. H. Chen, A. M. Li and L. Sheng, Extremal metrics on toric surfaces, Adv. Math. 340 (2018), 363–405.
  • X. X. Chen, C. LeBrun and B. Weber, On conformally Kähler-Einstein manifolds, J. Amer. Math. Soc. 21 (2008), 1137–1168.
  • D. A. Cox, J. B. Little and H. K. Schenck, Toric varieties, Graduate Studies in Mathematics, 124. American Mathematical Society, Providence, RI, 2011. xxiv+841 pp.
  • I. Dolgachev, Lectures on invariant theory, London Mathematical Society Lecture Note Series, 296. Cambridge University Press, Cambridge, 2003.
  • O. Debarre, Fano varieties, Higher dimensional varieties and rational points, (Budapest, 2001), 93–132, Bolyai Society Mathematical Studies 12, Springer, Berlin, 2003.
  • S. K. Donaldson, Scalar curvature and projective embeddings, I, J. Defferential Geom. 59 (2001), 479–522.
  • S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Defferential Geom. 62 (2002), 289–349.
  • S. K. Donaldson, Extremal metrics on toric surfaces: a continuity method, J. Defferential Geom. 79 (2008), 389–432.
  • S. K. Donaldson, Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal. 19 (2009), 83–136.
  • A. Futaki, Asymptotic Chow semi-stability and integral invariants, Int. J. Math. 15 (2004), 967–979.
  • A. Futaki, Asymptotic Chow stability in Kähler geometry, Fifth International Congress of Chinese Mathematicians. Part 1, 2, 139–153, AMS/IP Stud. Adv. Math., 51, pt. 1, 2, Amer. Math. Soc., Providence, RI, 2012.
  • A. Futaki and T. Mabuchi, Bilinear forms and extremal Kähler vector fields associated with Kähler class, Math. Ann. 301 (1995), 199–210.
  • A. Futaki, H. Ono and Y. Sano, Hilbert series and obstructions to asymptotic semistability, Adv. Math. 226 (2011), 254–284.
  • I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, MA, 1994.
  • E. Gawrilow and M. Joswig, Polymake Version 2.9.8-Convex polytopes, polyhedra, simplicial complexes, matroids, fans, and tropical objects, Available at wwwopt.mathematik.tu- darmstadt.de/polymake/doku.php, 1997-present.
  • M. M. Kapranov, B. Sturmfels and A. V. Zelevinsky, Chow polytopes and general resultants, Duke Math. J. 67 (1992), 189–218.
  • A. M. Kasprzyk, Canonical toric Fano threefolds, Canad. J. Math. 62 (2010), 1293–1309.
  • T. Mabuchi, Stability of extremal Kähler manifolds, Osaka J. Math. 41 (2004), 563–582.
  • T. Mabuchi, An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds. I, Invent. Math. 159 (2005), 225–243.
  • T. Mabuchi, Relative stability and extremal metrics, J. Math. Soc. Japan 66 (2014), 535–563.
  • T. Mabuchi, Asymptotic polybalanced kernels on extremal Kähler manifolds, Asian J. Math. 22 (2018), 647–664.
  • Y. Nakagawa, Combinatorial formulae for Futaki characters and generalized killing forms of toric Fano orbifolds, The Third Pacific Rim Geometry Conference (Seoul, 1996), 223–260, Monogr. Geom. Topology, 25, Int. Press, Cambridge, MA, 1998.
  • B. Nill, Gorenstein toric Fano varieties, Dissertation, Universität Tübingen, 2005. Available at http://tobias-lib.uni-tuebingen.de/volltexte/2005/1888
  • B. Nill and A. Paffenholz, Examples of Kähler-Eisntein toric Fano manifolds associated to non-symmetric reflexive polytopes, Beitr. Algebra. Geom 52 (2011), 297–304.
  • M. Obro, An algorithm for the classification of smooth Fano polytopes, arXiv:0704.0049 (2007).
  • Y. Odaka, The Calabi conjecture and K-stability, Int. Math. Res. Not. IMRN 2012, 2272–2288.
  • H. Ono, A necessary condition for Chow semistability of polarized toric manifolds, J. Math. Soc. Japan. 63 (2011), 1377–1389.
  • H. Ono, Algebro-geometric semistability of polarized toric manifolds, Asian J. Math. 17 (2013), 609–616.
  • H. Ono, Y. Sano and N. Yotsutani, An example of an asymptotically Chow unstable manifold with constant scalar curvature, Ann. Inst. Fourier (Grenoble) 62 (2012), 1265–1287.
  • J. Ross and R. Thomas, A study of the Hilbert-Mumford criterion for the stability of projective varieties, J. Alg. Geom. 16 (2007), 201–255.
  • R. Seyyedali, Relative Chow stability and extremal metrics, Adv. Math. 316 (2017), 770–805.
  • Y. L. Shi and H. X. Zhu, Kähler-Ricci solitons on toric Fano orbifolds, Math. Zeit. 271 (2012), 1241–1251.
  • G. Székelyhidi, Extremal metrics and K-stability, Dissertation, Imperial college, London, 2006. arXiv:0611002.
  • G. Székelyhidi, Extremal metrics and K-stability, Bull. London Math. Soc. 39 (2007), 76–84.
  • G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1–39.
  • G. Tian and X. H. Zhu, A new holomorphic invariant and uniqueness of Kahler-Ricci solitons, Comm. Math. Helv. 77 (2002), 297–325.
  • A. D. Vedova and F. Zuddas, Scalar curvature and asymptotic Chow stability of projective bundles and blowups, Trans. Amer. Math. Soc. 364 (2012), 6495–6511.
  • K. Watanabe and M. Watanabe, The classification of Fano 3-folds with torus embeddings, Tokyo J. Math. 5 (1982), 37–48.
  • X. J. Wang and B. Zhou, Existence and nonexistence of extremal metrics on toric Kähler manifolds, Adv. Math. 226 (2011), 4429–4455.
  • X. J. Wang and H. X. Zhu, Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004), 87–103.
  • N. Yotsutani, Facets of secondary polytopes and Chow stability of toric varieties, Osaka J. Math 53, (2016), 751–765.
  • B. Zhou and X. H. Zhu, Relative $K$-stability and modified $K$-energy on toric manifolds, Adv. Math. 219 (2008), 1327–1362.
  • B. Zhou and X. H. Zhu, $K$-stability on toric manifolds, Proc. Amer. Math. Soc. 136 (2008), 3301–3307.
  • Graded Ring Database, http://grdb.lboro.ac.uk/forms/toricsmooth.