Tohoku Mathematical Journal

Characterization of 2-dimensional normal Mather-Jacobian log canonical singularities

Kohsuke Shibata and Nguyen Duc Tam

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper we characterize 2-dimensional normal Mather-Jacobian log canonical singularities which are not complete intersections. We prove that a 2-dimensional normal singularity which is not a complete intersection is a Mather-Jacobian log canonical singularity if and only if it is a toric singularity with embedding dimension 4.

Article information

Source
Tohoku Math. J. (2), Volume 71, Number 1 (2019), 123-136.

Dates
First available in Project Euclid: 9 March 2019

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1552100445

Digital Object Identifier
doi:10.2748/tmj/1552100445

Mathematical Reviews number (MathSciNet)
MR3920793

Zentralblatt MATH identifier
07060329

Subjects
Primary: 14J17: Singularities [See also 14B05, 14E15]
Secondary: 14E18: Arcs and motivic integration 14M25: Toric varieties, Newton polyhedra [See also 52B20]

Keywords
Mather Jacobian singularity surface singularity Toric varieties

Citation

Shibata, Kohsuke; Tam, Nguyen Duc. Characterization of 2-dimensional normal Mather-Jacobian log canonical singularities. Tohoku Math. J. (2) 71 (2019), no. 1, 123--136. doi:10.2748/tmj/1552100445. https://projecteuclid.org/euclid.tmj/1552100445


Export citation

References

  • M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88, No. 1, (1966), 129–136.
  • T. de Fernex and R. Docampo, Jacobian discrepancies and rational singularities, arXiv:1106.2172, J. Eur. Math. Soc. (2014), no. 1, 165–199.
  • T. de Fernex and C. Hacon, Singularities on normal varieties, Math. Comp. 145 (2009), 393–414.
  • T. de Fernex, L. Ein and S. Ishii, Divisorial valuations via arcs, Publ. RIMS 44 (2008), 425–448.
  • L. Ein and S. Ishii, Singularities with respect to Mather-Jacobian discrepancies, Commutative Algebra and Noncommutative Algebraic Geometry, Vol. II, 125–168, Math. Sci. Res. Inst. Publ. 68, Cambridge Univ. Press, New York, 2015.
  • L. Ein, S. Ishii and M. Mustaţă, Multiplier ideals via Mather discrepancy, Minimal models and extremal rays (Kyoto, 2011), 9–28, Adv. Stud. Pure Math. 70, Math. Soc. Japan, Tokyo, 2016.
  • L. Ein and M. Mustaţă, Jet schemes and singularities, in Algebraic Geometry–Seattle 2005, Part 2, 505–546, Proc. Sympos. Pure Math. 80, Part 2, Amer. Math. Soc., Providence, RI, 2009.
  • W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol 131, Princeton Univ. Press, Princeton, New Jersey, 1993.
  • S. Ishii, Introduction to Singularities, Springer, 2014.
  • S. Ishii, Mather discrepancy and the arc spaces, arXiv:1106.0345, Ann. Inst. Fourier 63 (2013), 89–111.
  • H. Laufer, Normal two-dimensional singularities, Annals of Mathematics Studies, No. 71, Princeton Univ. Press, Princeton, New Jersey, 1971.
  • O. Riemenschneider, Deformationen von Quotientensingularitäten (nach zyklischen Gruppen), Math. Ann. 209 (1974), 211–248.
  • G. N. Tyurina, Absolute isolatedness of rational singularities and rational triple points, J. Fourier Anal. Appl. 2 (1968), 324–332.
  • J. Voight, Toric surfaces and continued fractions, https://math.dartmouth. edu/~jvoight/notes/cfrac.pdf