Tohoku Mathematical Journal

Spectral zeta functions of graphs and the Riemann zeta function in the critical strip

Fabien Friedli and Anders Karlsson

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We initiate the study of spectral zeta functions $\zeta_X$ for finite and infinite graphs $X$, instead of the Ihara zeta function, with a perspective towards zeta functions from number theory and connections to hypergeometric functions. The Riemann hypothesis is shown to be equivalent to an approximate functional equation of graph zeta functions. The latter holds at all points where Riemann's zeta function $\zeta(s)$ is non-zero. This connection arises via a detailed study of the asymptotics of the spectral zeta functions of finite torus graphs in the critcal strip and estimates on the real part of the logarithmic derivative of $\zeta(s)$. We relate $\zeta_{\mathbb{Z}}$ to Euler's beta integral and show how to complete it giving the functional equation $\xi_{\mathbb{Z}}(1-s)=\xi_{\mathbb{Z}}(s)$. This function appears in the theory of Eisenstein series although presumably with this spectral intepretation unrecognized. In higher dimensions $d$ we provide a meromorphic continuation of $\zeta_{\mathbb{Z}^d}(s)$ to the whole plane and identify the poles. From our aymptotics several known special values of $\zeta(s)$ are derived as well as its non-vanishing on the line $Re(s)=1$. We determine the spectral zeta functions of regular trees and show it to be equal to a specialization of Appell's hypergeometric function $F_1$ via an Euler-type integral formula due to Picard.

Article information

Tohoku Math. J. (2) Volume 69, Number 4 (2017), 585-610.

First available in Project Euclid: 2 December 2017

Permanent link to this document

Digital Object Identifier

Primary: 11M
Secondary: 10H05 05C50: Graphs and linear algebra (matrices, eigenvalues, etc.) 33C65: Appell, Horn and Lauricella functions

zeta functions combinatorial Laplacian functional equations hypergeometric functions Riemann Hypothesis


Friedli, Fabien; Karlsson, Anders. Spectral zeta functions of graphs and the Riemann zeta function in the critical strip. Tohoku Math. J. (2) 69 (2017), no. 4, 585--610. doi:10.2748/tmj/1512183631.

Export citation


  • Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, 55 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964 xiv+1046 pp.
  • The Riemann hypothesis. A resource for the afficionado and virtuoso alike. Edited by Peter Borwein, Stephen Choi, Brendan Rooney and Andrea Weirathmueller. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York, 2008. xiv+533 pp.
  • Laurent Bartholdi, Counting paths in graphs, Enseign. Math. 45 (1999), 83–131.
  • Matthias Beck and Mary Halloran, Finite trigonometric character sums via discrete Fourier analysis, Int. J. Number Theory 6 (2010), no. 1, 51–67.
  • Bruce C. Berndt and Boon Pin Yeap, Explicit evaluations and reciprocity theorems for finite trigonometric sums, Adv. in Appl. Math. 29 (2002), no. 3, 358–385.
  • Torsten Carleman, Propriétés asymptotiques des fonctions fondamentales des membranes vibrantes, Comptes rendus du VIIIe Congrès des Math. Scand. Stockholm, 1934, pp. 34–44.
  • Gautam Chinta, Jay Jorgenson and Anders Karlsson, Zeta functions, heat kernels, and spectral asymptotics on degenerating families of discrete tori, Nagoya Math. J. 198 (2010), 121–172.
  • Gautam Chinta, Jay Jorgenson and Anders Karlsson, Complexity and heights of tori, In: Dynamical systems and group actions, 89–98, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012.
  • Gautam Chinta, Jay Jorgenson and Anders Karlsson, Heat kernels on regular graphs and generalized Ihara zeta function formulas, Monatsh. Math. 178 (2015), no. 2, 171–190.
  • Wenchang Chu and Alberto Marini, Partial fractions and trigonometric identities, Adv. in Appl. Math. 23 (1999), no. 2, 115–175.
  • F. R. K. Chung and Robert Langlands, A combinatorial Laplacian with vertex weights, J. Combin. Theory Ser. A 75 (1996), no. 2, 316–327.
  • Djurdje Cvijović and H. M. Srivastava, Closed-form summations of Dowker's and related trigonometric sums, J. Phys. A 45 (2012), no. 37, 374015, 10 pp.
  • A. Dietmar, Ihara Zeta functions of infinite weighted graphs, SIAM J. Discrete Math. 29 (2015), no.4, 2100–2116.
  • Bertrand Duplantier and François David, Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice, J. Statist. Phys. 51 (1988), no. 3-4, 327–434.
  • E. Elizalde, Ten Physical Applications of Spectral Zeta Functions, Second edition. Lecture Notes in Physics, 855. Springer, Heidelberg, 2012. xiv+227 pp.
  • Harold Exton, Multiple hypergeometric functions and applications. Foreword by L. J. Slater. Mathematics & its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York-London-Sydney, 1976. 312 pp.
  • Fabien Friedli, A functional relation for $L$-functions of graphs equivalent to the Riemann hypothesis for Dirichlet $L$-functions, J. Number Theory 169 (2016), 342–352.
  • I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Translated from the Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. Seventh edition. Elsevier/Academic Press, Amsterdam, 2007. xlviii+1171 pp.
  • Rostislav I. Grigorchuk, Banach invariant means on homogeneous spaces and random walks, (Russian), Ph.D. thesis, Moscow State University, 1978.
  • Ki-ichiro Hashimoto, Artin type L-functions and the density theorem for prime cycles on finite graphs, Internat. J. Math.3 (1992), no. 6, 809–826.
  • S. W. Hawking, Zeta function regularization of path integrals in curved spacetime, Comm. Math. Phys. 55 (1977), no. 2, 133–148.
  • P. Henrici, Applied and Computational Complex Analysis, Vol. 2, John Wiley & Sons, New York, 1977.
  • Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory. American Mathematical Society Colloquium Publications, 53. American Mathematical Society, Providence, RI, 2004. xii+615 pp.
  • Jay Jorgenson and Serge Lang, Extension of analytic number theory and the theory of regularized harmonic series from Dirichlet series to Bessel series, Math. Ann. 306 (1996), no. 1, 75–124.
  • Jay Jorgenson and Serge Lang, The heat kernel, theta inversion and zetas on $\Gamma\backslashG/K$. In: Number theory, analysis and geometry, 273–306, Springer, New York, 2012.
  • Jeffrey C. Lagarias, On a positivity property of the Riemann $\xi$-function, Acta Arith. 89 (1999), no. 3, 217–234.
  • D. Lenz, F. Pogorzelski and M. Schmidt, The Ihara Zeta function for infinite graphs, arXiv:1408.3522
  • Laszlo Lovasz, Large networks and graph limits. American Mathematical Society Colloquium Publications, 60. American Mathematical Society, Providence, RI, 2012. xiv+475 pp.
  • Wolfgang Lück, $L^2$-invariants: theory and applications to geometry and $K$-theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 44. Springer-Verlag, Berlin, 2002. xvi+595 pp.
  • Russell Lyons, Identities and inequalities for tree entropy, Combin. Probab. Comput. 19 (2010), no. 2, 303–313.
  • Yu. Matiyasevich, F. Saidak and P. Zvengrowski, Horizontal monotonicity of the modulus of the zeta function, L-functions, and related functions, Acta Arith. 166 (2014), no. 2, 189–200.
  • S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canadian J. Math. 1 (1949), 242–256.
  • Bojan Mohar and Wolfgang Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc. 21 (1989), no. 3, 209–234.
  • Werner Müller, A spectral interpretation of the zeros of the constant term of certain Eisenstein series, J. Reine Angew. Math. 620 (2008), 67–84.
  • Émile Picard, Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques, Ann. Sci. École Norm. Sup. (2) 10 (1881), 305–322.
  • Å ke Pleijel, Sur les propriétés asymptotiques des fonctions et valeurs propres des plaques vibrantes, C. R. Acad. Sci. Paris 209 (1939), 717–718.
  • H. S. A. Potter and E. C. Titchmarsh, The Zeros of Epstein's Zeta-Functions, Proc. London Math. Soc. S2-39 no. 1 (1934), 372–384.
  • Nicolai Reshetikhin and Boris Vertman, Combinatorial quantum field theory and gluing formula for determinants, Lett. Math. Phys. 105 (2015), no. 3, 309–340.
  • R. K. Saxena, Integrals involving products of Bessel functions. II, Monatsh. Math. 70 (1966), 161–163.
  • Atle Selberg and S. Chowla, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 86–110.
  • Avram Sidi, Euler-Maclaurin expansions for integrals with endpoint singularities: a new perspective, Numer. Math. 98 (2004), no. 2, 371–387.
  • Jonathan Sondow, The Riemann hypothesis, simple zeros and the asymptotic convergence degree of improper Riemann sums, Proc. Amer. Math. Soc. 126 (1998), 1311–1314.
  • Jonathan Sondow and Cristian Dumitrescu, A monotonicity property of Riemann's xi function and a reformulation of the Riemann hypothesis, Period. Math. Hungar. 60 (2010), no. 1, 37–40.
  • H. M. Srivastava, and Harold Exton, A generalization of the Weber-Schafheitlin integral, J. Reine Angew. Math. 309 (1979), 1–6.
  • H. M. Srivastava and Per W. Karlsson, Multiple Gaussian hypergeometric series. Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press, New York, 1985. 425 pp.
  • H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings. II, Adv. Math. 154 (2000), no. 1, 132–195.
  • Toshikazu Sunada, $L$-functions in geometry and some applications. In: Curvature and topology of Riemannian manifolds (Katata, 1985), 266–284, Lecture Notes in Math., 1201, Springer, Berlin, 1986.
  • Audrey Terras, Zeta Functions of Graphs: A Stroll through the Garden. Cambridge Studies in Advanced Mathematics 128. Cambridge University Press, 2010.
  • Aurel Wintner, The sum formula of Euler-Maclaurin and the inversions of Fourier and Möbius, Amer. J. Math. 69 (1947), 685–708.
  • Don Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149–172.