Tohoku Mathematical Journal

Seidel elements and potential functions of holomorphic disc counting

Eduardo González and Hiroshi Iritani

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let $M$ be a symplectic manifold equipped with a Hamiltonian circle action and let $L$ be an invariant Lagrangian submanifold of $M$. We study the problem of counting holomorphic disc sections of the trivial $M$-bundle over a disc with boundary in $L$ through degeneration. We obtain a conjectural relationship between the potential function of $L$ and the Seidel element associated to the circle action. When applied to a Lagrangian torus fibre of a semi-positive toric manifold, this degeneration argument reproduces a conjecture (now a theorem) of Chan-Lau-Leung-Tseng [8, 9] relating certain correction terms appearing in the Seidel elements with the potential function.

Article information

Tohoku Math. J. (2), Volume 69, Number 3 (2017), 327-368.

First available in Project Euclid: 12 September 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53D45: Gromov-Witten invariants, quantum cohomology, Frobenius manifolds [See also 14N35]
Secondary: 53D12: Lagrangian submanifolds; Maslov index 53D37: Mirror symmetry, symplectic aspects; homological mirror symmetry; Fukaya category [See also 14J33]

Lagrangian torus fibres potential functions holomorphic discs mirror symmetry Jacobian ring


González, Eduardo; Iritani, Hiroshi. Seidel elements and potential functions of holomorphic disc counting. Tohoku Math. J. (2) 69 (2017), no. 3, 327--368. doi:10.2748/tmj/1505181621.

Export citation


  • M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. Lond. Math. Soc. 14 (1982), 1–15.
  • M. Audin, Torus actions on symplectic manifolds, Second revised edition, Progress in Mathematics, 93. Birkhäuser Verlag, Basel, 2004.
  • D. Auroux, Mirror symmetry and $T$-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT 1 (2007), 51–91.
  • D. Auroux, Special Lagrangian fibrations, wall-crossing, and mirror symmetry, In Surveys in differential geometry. Vol. XIII. Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry, 1–47, Surv. Differ. Geom., 13, Int. Press, Somerville, MA, 2009.
  • V. V. Batyrev, Quantum cohomology rings of toric manifolds, Journées de Géométrie Algébrique d'Orsay (Orsay, 1992). Astérisque, no. 218 (1993), 9–34.
  • K. Chan, A formula equating open and closed Gromov-Witten invariants and its applications to mirror symmetry, Pacific J. Math. 254 (2011), no. 2, 275–293.
  • K. Chan and S-C. Lau, Open Gromov-Witten invariants and superpotentials for semi-Fano toric surfaces, Int. Math. Res. Not. IMRN (2014), no. 14, 3759–3789.
  • K. Chan, S-C. Lau, N.C. Leung and H-H. Tseng, Open Gromov-Witten invariants and mirror maps for semi-Fano toric manifolds. arXiv:1112.0388.
  • K. Chan, S-C. Lau, N. C. Leung and H-H. Tseng, Open Gromov-Witten invariants and Seidel representations for toric manifolds. arXiv:1209.6119.
  • C-H. Cho and Y-G. Oh, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006), no. 4, 773–814.
  • D. A. Cox and S. Katz, Mirror symmetry and algebraic geometry, volume 68 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1999.
  • D. A. Cox, J. Little and H. Schenck, Toric Varieties, American Mathematical Society, 2010.
  • K. Fukaya, Y-G. Oh, H. Ohta and K. Ono, Lagrangian intersection Floer theory: anomaly and obstruction. Part I, Part II., volume 46 of AMS/IP Studies in Advanced Mathematics, American Mathematical Society, Providence, RI, 2009.
  • K. Fukaya, Y-G. Oh, H. Ohta and K. Ono, Lagrangian Floer theory and mirror symmetry on compact toric manifolds, 2010, arXiv:1009.1648.
  • K. Fukaya, Y-G. Oh, H. Ohta and K. Ono, Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010), no. 1, 23–174.
  • K. Fukaya, Y-G. Oh, H. Ohta and K. Ono, Technical details on Kuranishi structure and virtual fundamental chain, 2012. arXiv:1209.4410.
  • K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Toric degeneration and non-displaceable Lagrangian tori in $S^2\times S^2$. arXiv:1002.1660.
  • K. Fukaya and K. Ono, Arnold conjecture and Gromov-Witten invariant, Topology 38 (1999), no. 5, 933–1048.
  • A. Givental, A mirror theorem for toric complete intersections. In Topological field theory, primitive forms and related topics (Kyoto, 1996), volume 160 of Progr. Math., pages 141–175. Birkhäuser Boston, Boston, MA, 1998.
  • E. González, Quantum cohomology and $S^1$-actions with isolated fixed points, Trans. Amer. Math. Soc. 358 (2006), no. 7, 2927–2948 (electronic).
  • E. González and H. Iritani, Seidel elements and mirror transformations, Selecta Math. (N.S.) 18 (2012), no. 3, 557–590.
  • V. Guillemin, Moment Maps and Combinatorial Invariants of Hamiltonian $T^n$-Spaces, volume 122 of Progress in Mathematics, Birkhäuser, Boston, 1994.
  • S. Katz and C-C. M. Liu, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc. In The interaction of finite-type and Gromov-Witten invariants (BIRS 2003), volume 8 of Geom. Topol. Monogr., pages 1–47. Geom. Topol. Publ., Coventry, 2006.
  • F. Lalonde, D. McDuff and L. Polterovich, Topological rigidity of Hamiltonian loops and quantum homology. Invent. Math. 135 (1999), no. 2, 69–385.
  • D. McDuff, Quantum homology of fibrations over $S^2$, Internat. J. Math. 11 (2000), no. 5, 665–721.
  • D. McDuff and S. Tolman, Topological properties of Hamiltonian circle actions, IMRP Int. Math. Res. Pap. (2006), 72826, 1–77.
  • P. Seidel, $\pi\sb 1$ of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997), no. 6, 1046–1095.