Tohoku Mathematical Journal

Some new properties concerning BLO martingales

Eiichi Nakai and Gaku Sadasue

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Some new properties concerning BLO martingales are given. The BMO-BLO boundedness of martingale maximal functions and Bennett type characterization of BLO martingales are shown. Also, a non-negative BMO martingale that is not in BLO is constructed.

Article information

Source
Tohoku Math. J. (2) Volume 69, Number 2 (2017), 183-194.

Dates
First available in Project Euclid: 24 June 2017

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1498269622

Digital Object Identifier
doi:10.2748/tmj/1498269622

Subjects
Primary: 60G46: Martingales and classical analysis
Secondary: 60G42: Martingales with discrete parameter 42B35: Function spaces arising in harmonic analysis

Keywords
Martingale BMO BLO pointwise multiplier Campanato space

Citation

Nakai, Eiichi; Sadasue, Gaku. Some new properties concerning BLO martingales. Tohoku Math. J. (2) 69 (2017), no. 2, 183--194. doi:10.2748/tmj/1498269622. https://projecteuclid.org/euclid.tmj/1498269622.


Export citation

References

  • C. Bennett, Another characterization of BLO, Proc. Amer. Math. Soc. 85 (1982), 552–556.
  • R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), 249–254.
  • H. Lin, E. Nakai and D. Yang, Boundedness of Lusin-area and $g_{\lambda}^{\ast}$ functions on localized BMO spaces over doubling metric measure spaces, Bull. Sci. Math. 135 (2011), 59–88.
  • R. L. Long, Martingale spaces and inequalities, Peking University Press, Beijing, 1993.
  • E. Nakai, A generalization of Hardy spaces $H^p$ by using atoms, Acta Math. Sin. (Engl. Ser.) 24 (2008), 1243–1268.
  • E. Nakai and G. Sadasue, Martingale Morrey-Campanato spaces and fractional integrals, J. Funct. Spaces Appl. 2012 (2012), Article ID 673929, 29 pages. DOI:10.1155/2012/673929
  • E. Nakai and G. Sadasue, Pointwise multipliers on martingale Campanato spaces, Studia Math. 220 (2014), 87–100.
  • A. Osȩkowski, Sharp estimates for functions of bounded lower oscillation, Bull. Aust. Math. Soc. 87 (2013), 68–81.
  • Y. Shiota, On a decomposition of BMO-martingales, Tohoku Math. J. (2) 33 (1981), 515–520.
  • Y. Shiota, Certain decompositions of BMO-martingales, Tohoku Math. J. (2) 33 (1981), 561–565.
  • N. Th. Varopoulos, A probabilistic proof of the Garnett-Jones theorem on BMO, Pacific J. Math. 90 (1980), 201–221.
  • N. Th. Varopoulos, The Helson-Szegö theorem and $A_p$-functions for Brownian motion and several variables, J. Funct. Anal. 39 (1980), 85–121.
  • F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Mathematics, 1568, Springer-Verlag, Berlin, 1994.