Tohoku Mathematical Journal

Isometric deformations of cuspidal edges

Kosuke Naokawa, Masaaki Umehara, and Kotaro Yamada

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Along cuspidal edge singularities on a given surface in Euclidean 3-space $\boldsymbol{R}^3$, which can be parametrized by a regular space curve $\hat\gamma(t)$, a unit normal vector field $\nu$ is well-defined as a smooth vector field of the surface. A cuspidal edge singular point is called generic if the osculating plane of $\hat\gamma(t)$ is not orthogonal to $\nu$. This genericity is equivalent to the condition that its limiting normal curvature $\kappa_\nu$ takes a non-zero value. In this paper, we show that a given generic (real analytic) cuspidal edge $f$ can be isometrically deformed preserving $\kappa_\nu$ into a cuspidal edge whose singular set lies in a plane. Such a limiting cuspidal edge is uniquely determined from the initial germ of the cuspidal edge.

Article information

Source
Tohoku Math. J. (2), Volume 68, Number 1 (2016), 73-90.

Dates
First available in Project Euclid: 17 March 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1458248863

Digital Object Identifier
doi:10.2748/tmj/1458248863

Mathematical Reviews number (MathSciNet)
MR3476137

Zentralblatt MATH identifier
1350.57031

Subjects
Primary: 57R45: Singularities of differentiable mappings
Secondary: 53A05: Surfaces in Euclidean space

Keywords
Cuspidal edge isometric deformation

Citation

Naokawa, Kosuke; Umehara, Masaaki; Yamada, Kotaro. Isometric deformations of cuspidal edges. Tohoku Math. J. (2) 68 (2016), no. 1, 73--90. doi:10.2748/tmj/1458248863. https://projecteuclid.org/euclid.tmj/1458248863


Export citation

References

  • F. S. Dias and F. Tari, On the geometry of the cross-cap in the Minkowski 3-space, preprint, 2012. Available from www.icmc.usp.br/~faridtari/Papers/DiasTari.pdf.
  • D. Fuchs and S. Tabachnikov, Thirty lectures on Classic Mathematics, American Mathematical Society, Providence, Rhode Island, 2007.
  • T. Fukui and M. Hasegawa, The Fronts of Whitney umbrella–-a differential geometric approach via blowing up, J. Singul. 4 (2012), 35–67.
  • R. Garcia, C. Gutierrez and J. Sotomayor, Lines of principal curvature around umbilics and Whitney umbrellas, Tohoku Math. J. 52 (2000), 163–172.
  • M. Hasegawa, A. Honda, K. Naokawa, M. Umehara and K. Yamada, Intrinsic invariants of cross caps, Selecta Mathematica 20 (2014), 769–785.
  • M. Hasegawa, A. Honda, K. Naokawa, K. Saji, M. Umehara and K. Yamada, Intrinsic properties of singularities of surfaces, Int. J. Math. 26 (2015), 1540008, 34pp.
  • M. Kossowski, Realizing a singular first fundamental form as a nonimmersed surface in Euclidean 3-space, J. Geom. 81 (2004), 101–113.
  • M. Kokubu, W. Rossman, K. Saji, M. Umehara and K. Yamada, Singularities of flat fronts in hyperbolic 3-space, Pacific J. Math. 221 (2005), 303–351.
  • L. F. Martins and J. J. Nuño-Ballesteros, Contact properties of surfaces in $\boldsymbo{R}^3$ with corank 1 singularities, Tohoku Math. J. (2) 67 (2015), 105–124.
  • L. F. Martins and K. Saji, Geometric invariants of cuspidal edges, to appear in Canad. J. Math., doi:10.4153/CJM-2015-011-5.
  • L. F. Martins, K. Saji, M. Umehara and K. Yamada, Behavior of Gaussian curvature and mean curvature near non-degenerate singular points on wave fronts, to appear in “Conference: Geometry and Topology of Manifolds; The 10th Geometry Conference for the Friendship of China and Japan, 2014”, ed. A. Futaki, et. al., Springer Proceedings in Mathematics & Statistics, arXiv:1308.2136.
  • S. Murata and M. Umehara, Flat surfaces with singularities in Euclidean 3-space, J. Differential Geometry 82 (2009), 279–316.
  • R. Oset Sinha and F. Tari, Projections of surfaces in $\mathbb{R}^4$ to $\mathbb{R}^3$ and the geometry of their singular images, Rev. Mat. Iberoam. 31 (2015), 33–50.
  • M. Spivak, A comprehensive Introduction to Differential Geometry V, Publish or Perish Inc. Houston, Texas, 1999.
  • K. Saji, M. Umehara and K. Yamada, The geometry of fronts, Ann. of Math. 169 (2009), 491–529.
  • F. Tari, On pairs of geometric foliations on a cross-cap, Tohoku Math. J. 59 (2007), 233–258.