Tohoku Mathematical Journal

Ramification and nearby cycles for $\ell$-adic sheaves on relative curves

Haoyu Hu

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Deligne and Kato proved a formula computing the dimension of the nearby cycles complex of an $\ell$-adic sheaf on a relative curve over an excellent strictly henselian trait. In this article, we reprove this formula using Abbes-Saito's ramification theory.

Article information

Source
Tohoku Math. J. (2), Volume 67, Number 2 (2015), 153-194.

Dates
First available in Project Euclid: 25 June 2015

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1435237040

Digital Object Identifier
doi:10.2748/tmj/1435237040

Mathematical Reviews number (MathSciNet)
MR3365369

Zentralblatt MATH identifier
1335.14006

Subjects
Primary: 14F20: Étale and other Grothendieck topologies and (co)homologies
Secondary: 11S15: Ramification and extension theory

Keywords
Nearby cycles ramification characteristic cycles Deligne-Kato's formula

Citation

Hu, Haoyu. Ramification and nearby cycles for $\ell$-adic sheaves on relative curves. Tohoku Math. J. (2) 67 (2015), no. 2, 153--194. doi:10.2748/tmj/1435237040. https://projecteuclid.org/euclid.tmj/1435237040


Export citation

References

  • A. Abbes and A. Mokrane, Sous-groupes canoniques et cycles évanescents $p$-adiques pour les variétés abéliennes. Inst., Hautes Études Sci. Publ. Math. 99 (2004), 117–162.
  • A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields. Amer. J. Math. 124 (2002), 879–920.
  • A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields II. Doc. Math. Extra Volume Kato (2003), 5–72.
  • A. Abbes and T. Saito, Analyse micro-locale $\ell$-adique en caractéristique $p>0$ le cas d'un trait. Publ. Res. Inst. Math. Sci. 45 (2009), 25–74.
  • A. Abbes and T. Saito, Local fourier transform and epsilon factors. Compos. Math. 146 (2010), 1507–1551.
  • A. Abbes and T. Saito, Ramification and cleanliness. Tohuku Math. J. Centennial Issue 63 (2011), No. 4, 775–853.
  • S. Bosch, U. Güntzer and R. Remmert, Non-archimedean analysis. Grundlehren der Mathematischen Wissenschaften 261, Springer-Verlag, New York, Heidelberg, Berlin, 1984.
  • P. Deligne and N. Katz, Groupes de monodromie en géométrie algébriques.II. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Lecture Notes of Mathematices 340, springer-verlag, New York, Heidelberg, Berlin, 1973.
  • H. Epp, Eliminating wild ramification. Invent. Math. 19 (1973), 235–249.
  • L. Fu, Etale cohomology theory. Nankai Tracts Math. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.
  • A. Grothendieck and J.A. Dieudonné. Éléments de géometrie algébrique. IV. Étude locale des schémas et des morphisms de shémas. Inst. Hautes Études Sci. Publ. Math. 20 (1961), 24 (1965), 28 (1966), 32 (1967).
  • A. Grothendieck et al. Groupes de monodromie en géométrie algébriques.I. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I). Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. Lecture Notes in Mathematics 288. Sringer-Verlag, Berlin-New York, 1972.
  • A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry. Inst. Hautes Études Sci. Publ. Math. 82 (1995), 5–96.
  • K. Kato, Vanishing cycles, ramification of valuations, and class field theory. Duke Math. J. 55 (1987), No. 3, 629–659.
  • K. Kato, Swan conductors with differential values. Adv. Stud. Pure Math. 12 (1987), 315–342.
  • K. Kato, Swan conductors for characters of degree one in the imperfect residue field case. Contemp. Math. 83 (1989), 101–131.
  • N. Katz, Gauss sum, Kloosterman sums, and monodromy groups. Annals of Mathematics Studies 116, Princeton University Press, Princeton, NJ, 1988.
  • G. Laumon, Semi-continuité du conducteur de Swan (d'après P. Deligne). In the Euler-Poincaré characteristic, Astérisque, 82–83 (1981), 173–219.
  • G. Laumon, Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil. Inst. Hautes Études Sci. Publ. Math. 65 (1987), 131–210.
  • A. Obus and S. Wewers, Cyclic extensions and the local lifting problem. 2012, arXiv:1203.5057.
  • T. Saito, Trace formula for vanishing cycles of curves. Math. Ann. 276 (1987), 311–315.
  • T. Saito, Wild ramification and the characteristic cycle of an $\ell$-adic sheaf. J. Inst. Math. Jussieu 8 (2009), 769–829.
  • T. Saito, Ramification of local fields with imperfect residue fields III. Math. Ann. 352 (2012), No.3, 567–580.
  • T. Saito, Wild Ramification and the cotangent bundle. 2013, arXiv:1301.4632v4.
  • J. P. Serre, Corps locaux. Deuxième édition, Publications de l'Université de Nancago, No.VIII. Hermann, Paris, 1968.
  • J. P. Serre, Linear representations of finite groups. Graduate Texts in Mathematics 42. Springer-Verlag, New York-Heidelberg, 1977.
  • L. Xiao, On ramification filtrations and $p$-adic differential equations, I: equal characteristic case. Algebra Number Theory 4 (2010), 969–1027.