Tohoku Mathematical Journal

Prolongation of holomorphic vector fields on a tube domain

Satoru Shimizu

Full-text: Open access

Abstract

In this paper, we discuss some algebraic criterion on the completeness of holomorphic vector fields on a tube domain $T_\Omega$. Our objects of consideration are polynomial vector fields on $T_\Omega$. We give a method of determining the higher degree complete polynomial vector fields from the data on the lower degree complete polynomial vector fields, which we call prolongation. Furthermore, we give its applications to the holomorphic equivalence problem for tube domains.

Article information

Source
Tohoku Math. J. (2), Volume 65, Number 4 (2013), 495-514.

Dates
First available in Project Euclid: 6 December 2013

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1386354292

Digital Object Identifier
doi:10.2748/tmj/1386354292

Mathematical Reviews number (MathSciNet)
MR3161430

Zentralblatt MATH identifier
1295.32002

Subjects
Primary: 32A07: Special domains (Reinhardt, Hartogs, circular, tube)
Secondary: 32M05: Complex Lie groups, automorphism groups acting on complex spaces [See also 22E10]

Keywords
Tube domains Holomorphic vector fields

Citation

Shimizu, Satoru. Prolongation of holomorphic vector fields on a tube domain. Tohoku Math. J. (2) 65 (2013), no. 4, 495--514. doi:10.2748/tmj/1386354292. https://projecteuclid.org/euclid.tmj/1386354292


Export citation

References

  • S. Kobayashi, Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften 318, Springer-Verlag, Berlin, Heidelberg, New York, 1998.
  • N. G. Kruzhilin and P. A. Soldatkin, Affine and holomorphic equivalence of tube domains in $\boldsymbol C^2$, Math. Notes 75 (2004), 623–634.
  • N. G. Kruzhilin and P. A. Soldatkin, Holomorphic equivalence of tube domains in $\boldsymbol C^2$, Proc. Steklov Inst. Math. 253 (2006), 90–99.
  • Y. Matsushima, On tube domains, in Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), pp. 255–270, Pure and Appl. Math. Vol. 8, Dekker, New York, 1972.
  • S. Murakami, On automorphisms of siegel domains, Lect. Notes in Math. 286, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
  • S. Shimizu, Automorphisms of tube domains, in Geometry and Analysis on Complex Manifolds, Festschrift for Professor S. Kobayashi's 60th Birthday (T. Mabuchi, J. Noguchi, T. Ochiai, ed.), pp. 198–241, World Scientific, Singapore, New Jersey, London, Hong Kong, 1994.
  • S. Shimizu, Holomorphic equivalence problem for two-dimensional tube domains with polynomial infinitesimal automorphisms, in Geometric Complex Analysis, Proceedings of the third international research institute, the Mathematical Society of Japan, Hayama, 1995, pp. 563–568, (J. Noguchi, H. Fujimoto, J. Kajiwara, T. Ohsawa, ed.), World Scientific, Singapore, New Jersey, London, Hong Kong, 1996.
  • S. Shimizu, Automorphisms and equivalence of tube domains with bounded base, Math. Ann. 315 (1999), 295–320.
  • S. Shimizu, A classification of two-dimensional tube domains, Amer. J. Math. 122 (2000), 1289–1308.
  • S. Shimizu, Holomorphic equivalence problem for two-dimensional tube domains with polynomial infinitesimal automorphisms, in preparation.
  • S. Shimizu, Structure and equivalence of a class of tube domains with solvable groups of automorphisms, in preparation.