Tohoku Mathematical Journal

On the ACC for lengths of extremal rays

Osamu Fujino and Yasuhiro Ishitsuka

Full-text: Open access

Abstract

We discuss the ascending chain condition for lengths of extremal rays. We prove that the lengths of extremal rays of $n$-dimensional $\boldsymbol{Q}$-factorial toric Fano varieties with Picard number one satisfy the ascending chain condition.

Article information

Source
Tohoku Math. J. (2), Volume 65, Number 1 (2013), 93-103.

Dates
First available in Project Euclid: 8 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1365452627

Digital Object Identifier
doi:10.2748/tmj/1365452627

Mathematical Reviews number (MathSciNet)
MR3049642

Zentralblatt MATH identifier
1271.14075

Subjects
Primary: 14M25: Toric varieties, Newton polyhedra [See also 52B20]
Secondary: 14E30: Minimal model program (Mori theory, extremal rays)

Keywords
Ascending chain condition lengths of extremal rays Fano varieties toric varieties minimal model program

Citation

Fujino, Osamu; Ishitsuka, Yasuhiro. On the ACC for lengths of extremal rays. Tohoku Math. J. (2) 65 (2013), no. 1, 93--103. doi:10.2748/tmj/1365452627. https://projecteuclid.org/euclid.tmj/1365452627


Export citation