Tohoku Mathematical Journal

A note on the conjecture of Blair in contact Riemannian geometry

Vladimir Krouglov

Full-text: Open access


The conjecture of Blair says that there are no nonflat Riemannian metrics of nonpositive curvature associated with a contact structure. We prove this conjecture for a certain class of contact structures on closed 3-dimensional manifolds and construct a local counterexample.

Article information

Tohoku Math. J. (2), Volume 64, Number 4 (2012), 561-567.

First available in Project Euclid: 20 December 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53D10: Contact manifolds, general
Secondary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)

Contact metric manifolds associated metrics


Krouglov, Vladimir. A note on the conjecture of Blair in contact Riemannian geometry. Tohoku Math. J. (2) 64 (2012), no. 4, 561--567. doi:10.2748/tmj/1356038978.

Export citation


  • D. E. Blair, On the non-existence of flat contact metric structures, Tohoku Math. J. 28 (1976), 373–379.
  • D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progr. Math. 203, Birkhauser Boston, Inc., Boston, MA, 2002.
  • F. Bourgeois, Odd dimensional tori are contact manifolds, Int. Math. Res. Not. no. 30, 1571–1574.
  • S. S. Chern and R. S. Hamilton, On Riemannian metrics adapted to three-dimensional contact manifolds, With an appendix by Alan Weinstein. Lecture Notes in Math., 1111, Workshop Bonn 1984 (Bonn, 1984), 279–308, Springer, Berlin, 1985.
  • J. B. Etnyre, R. Komendarczyk and P. Massot, Tightness in contact metric 3-manifolds, Invent. Math. 188 (2012), 621–657.
  • A. Lotta, Non existence of homogenous contact metric manifolds of nonpositive curvature, Tohoku Math. J. 62 (2010), 575–578.
  • B. Reinhart, The second fundamental form of a plane field. - Cambridge University Press, J. Differential Geom. 12 (1977), 619–627.
  • S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), 349–379.
  • A. Zeghib, Sur les feuilletages geodesiques continus des varietes hyperboliques, Invent. Math. 114 (1993), 193–206.