Tohoku Mathematical Journal
- Tohoku Math. J. (2)
- Volume 63, Number 4 (2011), 561-579.
Homoclinic and heteroclinic orbits for a semilinear parabolic equation
Full-text: Open access
Abstract
We study the existence of connecting orbits for the Fujita equation with a critical or supercritical exponent. For certain ranges of the exponent we prove the existence of heteroclinic connections from positive steady states to zero and a homoclinic orbit with respect to zero.
Article information
Source
Tohoku Math. J. (2), Volume 63, Number 4 (2011), 561-579.
Dates
First available in Project Euclid: 6 January 2012
Permanent link to this document
https://projecteuclid.org/euclid.tmj/1325886281
Digital Object Identifier
doi:10.2748/tmj/1325886281
Mathematical Reviews number (MathSciNet)
MR2872956
Zentralblatt MATH identifier
1252.35157
Subjects
Primary: 35K55: Nonlinear parabolic equations
Secondary: 35B05: Oscillation, zeros of solutions, mean value theorems, etc. 35B40: Asymptotic behavior of solutions 35V05
Keywords
Homoclinic orbit heteroclinic orbits ancient solutions stationary solutions self-similar solutions
Citation
Fila, Marek; Yanagida, Eiji. Homoclinic and heteroclinic orbits for a semilinear parabolic equation. Tohoku Math. J. (2) 63 (2011), no. 4, 561--579. doi:10.2748/tmj/1325886281. https://projecteuclid.org/euclid.tmj/1325886281
References
- T. Bartsch, P. Poláčik and P. Quittner, Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations, J. Eur. Math. Soc. 13 (2011), 219–247. Mathematical Reviews (MathSciNet): MR2735082
Zentralblatt MATH: 1215.35041
Digital Object Identifier: doi:10.4171/JEMS/250 - M.-F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term, Equations aux dérivées partielles et applications, articles dédiés à Jacques-Louis Lions, 189–198, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998. Mathematical Reviews (MathSciNet): MR1648222
- P. Brunovský and B. Fiedler, Connecting orbits in scalar reaction diffusion equations, Dynam. Report. Ser. Dynam. Systems Appl. 1 (1988), 57–89. Mathematical Reviews (MathSciNet): MR945964
Digital Object Identifier: doi:10.1007/978-3-322-96656-8_2 - P. Brunovský and B. Fiedler, Connecting orbits in scalar reaction diffusion equations II: The complete solution, J. Differential Equations 81 (1989), 106–135. Mathematical Reviews (MathSciNet): MR1012202
Zentralblatt MATH: 0699.35144
Digital Object Identifier: doi:10.1016/0022-0396(89)90180-0 - N. Chafee and E. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal. 4 (1974/75), 17–37. Mathematical Reviews (MathSciNet): MR440205
Digital Object Identifier: doi:10.1080/00036817408839081 - B. Fiedler, Global attractors of one-dimensional parabolic equations: sixteen examples, Tatra Mt. Math. Publ. 4 (1994), 67–92.
- B. Fiedler and C. Rocha, Heteroclinic orbits of scalar semilinear parabolic equations, J. Differential Equations 125 (1996), 239–281.
- B. Fiedler and C. Rocha, Realization of meander permutations by boundary value problems, J. Differential Equations 156 (1999), 282–308. Mathematical Reviews (MathSciNet): MR1705403
Zentralblatt MATH: 0935.34018
Digital Object Identifier: doi:10.1006/jdeq.1998.3532 - B. Fiedler and C. Rocha, Orbit equivalence of global attractors of semilinear parabolic differential equations, Trans. Amer. Math. Soc. 352 (2000), 257–284. Mathematical Reviews (MathSciNet): MR1475682
Zentralblatt MATH: 0932.37065
Digital Object Identifier: doi:10.1090/S0002-9947-99-02209-6 - M. Fila, J. R. King, M. Winkler and E. Yanagida, Linear behaviour of solutions of a superlinear heat equation, J. Math. Anal. Appl. 340 (2008), 401–409. Mathematical Reviews (MathSciNet): MR2376163
Zentralblatt MATH: 1263.35137
Digital Object Identifier: doi:10.1016/j.jmaa.2007.08.029 - M. Fila and H. Matano, Connecting equilibria by blow-up solutions, Discrete Contin. Dynam. Systems 6 (2000), 155–164.
- M. Fila, H. Matano and P. Poláčik, Existence of $L^1$-connections between equilibria of a semilinear parabolic equation, J. Dynam. Differential Equations 14 (2002), 463–491. Mathematical Reviews (MathSciNet): MR1917647
Zentralblatt MATH: 1001.35054
Digital Object Identifier: doi:10.1023/A:1016507330323 - M. Fila and N. Mizoguchi, Multiple continuation beyond blow-up, Differential Integral Equations 20 (2007), 671–680.
- M. Fila and P. Poláčik, Global solutions of a semilinear parabolic equation, Adv. Differential Equations 4 (1999), 163–196. Mathematical Reviews (MathSciNet): MR1674359
Zentralblatt MATH: 0953.35065
Project Euclid: euclid.ade/1366291412 - M. Fila, M. Winkler and E. Yanagida, Convergence to selfsimilar solutions for a semilinear parabolic equation, Discrete Contin. Dyn. Syst. 21 (2008), 703–716. Mathematical Reviews (MathSciNet): MR2399433
Digital Object Identifier: doi:10.3934/dcds.2008.21.703 - A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425–447. Mathematical Reviews (MathSciNet): MR783924
Zentralblatt MATH: 0576.35068
Digital Object Identifier: doi:10.1512/iumj.1985.34.34025 - Y. Fukao, Y. Morita and H. Ninomiya, Some entire solutions of the Allen-Cahn equation, Taiwanese J. Math. 8 (2004), 15–32.
- G. Fusco and C. Rocha, A permutation related to the dynamics of a scalar parabolic PDE, J. Differential Equations 91 (1991), 111–137. Mathematical Reviews (MathSciNet): MR1106120
Zentralblatt MATH: 0768.35048
Digital Object Identifier: doi:10.1016/0022-0396(91)90134-U - V. Galaktionov and J. L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997), 1–67. Mathematical Reviews (MathSciNet): MR1423231
Zentralblatt MATH: 0874.35057
Digital Object Identifier: doi:10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.0.CO;2-H - B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525–598. Mathematical Reviews (MathSciNet): MR615628
Zentralblatt MATH: 0465.35003
Digital Object Identifier: doi:10.1002/cpa.3160340406 - A. Haraux and F. B. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (1982), 167–189. Mathematical Reviews (MathSciNet): MR648169
Digital Object Identifier: doi:10.1512/iumj.1982.31.31016 - D. Henry, Geometric theory of semilinear parabolic equations, Springer-Verlag, New York, 1981. Mathematical Reviews (MathSciNet): MR610244
- D. Henry, Some infinite dimensional Morse–Smale systems defined by parabolic differential equations, J. Differential Equations 59 (1985), 165–205. Mathematical Reviews (MathSciNet): MR804887
Zentralblatt MATH: 0572.58012
Digital Object Identifier: doi:10.1016/0022-0396(85)90153-6 - L. A. Lepin, Countable spectrum of eigenfunctions of a nonlinear heat-conduction equation with distributed parameters, Differentsial'nye Uravneniya 24 (1988), 1226–1234 (English translation: Differential Equations 24 (1988), 799–805). Mathematical Reviews (MathSciNet): MR958417
- L. A. Lepin, Self-similar solutions of a semilinear heat equation, (in Russian), Mat. Model. 2 (1990), 63–74. Mathematical Reviews (MathSciNet): MR1059601
- Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u + K(x)u^p=0$ in $\boldsymbol{R}^n$, J. Differential Equations 95 (1992), 304–330. Mathematical Reviews (MathSciNet): MR1165425
Zentralblatt MATH: 0778.35010
Digital Object Identifier: doi:10.1016/0022-0396(92)90034-K - N. Mizoguchi, Nonexistence of backward self-similar blowup solutions to a supercritical semilinear heat equation, J. Funct. Anal. 257 (2009), 2911–2937. Mathematical Reviews (MathSciNet): MR2559721
Zentralblatt MATH: 1185.35133
Digital Object Identifier: doi:10.1016/j.jfa.2009.07.009 - Y. Naito, An ODE approach to the multiplicity of self-similar solutions for semilinear heat equations, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 807–835. Mathematical Reviews (MathSciNet): MR2250448
Zentralblatt MATH: 1112.35100
Digital Object Identifier: doi:10.1017/S0308210500004741 - P. Poláčik, Parabolic equations: Asymptotic behavior and dynamics on invariant manifolds, Handbook of dynamical systems (B. Fiedler ed.), Vol. 2, Chapter 16, Elsevier, Amsterdam, 2002.
- P. Poláčik and P. Quittner, A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation, Nonlinear Anal. 64 (2006), 1679–1689. Mathematical Reviews (MathSciNet): MR2197355
- P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: Parabolic equations, Indiana Univ. Math. J. 56 (2007), 879–908. Mathematical Reviews (MathSciNet): MR2317549
Zentralblatt MATH: 1122.35051
Digital Object Identifier: doi:10.1512/iumj.2007.56.2911 - P. Poláčik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Ann. 327 (2003), 745–771. Mathematical Reviews (MathSciNet): MR2023315
Zentralblatt MATH: 1055.35055
Digital Object Identifier: doi:10.1007/s00208-003-0469-y - P. Poláčik and E. Yanagida, A Liouville property and quasiconvergence for a semilinear heat equation, J. Differential Equations 208 (2005), 194–214. Mathematical Reviews (MathSciNet): MR2107299
Zentralblatt MATH: 1068.35044
Digital Object Identifier: doi:10.1016/j.jde.2003.10.019 - P. Quittner and Ph. Souplet, Superlinear parabolic problems. Blow-up, global existence and steady states, Birkhäuser Advanced Texts, Birkhäuser, Basel, 2007. Mathematical Reviews (MathSciNet): MR2346798
- J. Smoller, Shock waves and reaction-diffusion equations, Grundlehren Math. Wiss. 258, Springer-Verlag, New York, 1983. Mathematical Reviews (MathSciNet): MR688146
- Ph. Souplet and F. B. Weissler, Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 213–235. Mathematical Reviews (MathSciNet): MR1961515
Zentralblatt MATH: 1029.35106
Digital Object Identifier: doi:10.1016/S0294-1449(02)00003-3 - X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc. 337 (1993), 549–590. Mathematical Reviews (MathSciNet): MR1153016
Zentralblatt MATH: 0815.35048
Digital Object Identifier: doi:10.1090/S0002-9947-1993-1153016-5
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Global solutions of higher-order semilinear parabolic equations in the supercritical
range
Egorov, Yu. V., Galaktionov, V. A., Kondratiev, V. A., and Pohozaev, S. I., Advances in Differential Equations, 2004 - Positive solutions of semilinear elliptic equations: a dynamical approach
Franca, Matteo, Differential and Integral Equations, 2013 - Grow-up rate of solutions of a semilinear parabolic equation with a critical
exponent
Fila, Marek, King, John R., Winkler, Michael, and Yanagida, Eiji, Advances in Differential Equations, 2007
- Global solutions of higher-order semilinear parabolic equations in the supercritical
range
Egorov, Yu. V., Galaktionov, V. A., Kondratiev, V. A., and Pohozaev, S. I., Advances in Differential Equations, 2004 - Positive solutions of semilinear elliptic equations: a dynamical approach
Franca, Matteo, Differential and Integral Equations, 2013 - Grow-up rate of solutions of a semilinear parabolic equation with a critical
exponent
Fila, Marek, King, John R., Winkler, Michael, and Yanagida, Eiji, Advances in Differential Equations, 2007 - Forward self-similar solutions of a semilinear parabolic equation with a nonlinear
gradient term
Tayachi, S., Differential and Integral Equations, 1996 - Non-accessible singular homoclinic orbits for a semilinear parabolic
equation
Fila, Marek and Yanagida, Eiji, Differential and Integral Equations, 2014 - Well-posedness and asymptotic behavior of a nonautonomous, semilinear hyperbolic-parabolic equation with dynamical boundary condition of memory type
Yassine, Hassan, Journal of Integral Equations and Applications, 2013 - Fujita type results for a class of degenerate parabolic operators
Pascucci, Andrea, Advances in Differential Equations, 1999 - Very slow convergence to zero for a supercritical semilinear parabolic
equation
Stinner, Christian, Advances in Differential Equations, 2009 - Semilinear Parabolic Equations on the Heisenberg Group with a Singular Potential
Mokrani, Houda and Mint Aghrabatt, Fatimetou, Abstract and Applied Analysis, 2012 - Quenching rate of solutions for a semilinear parabolic equation
Hoshino, Masaki, Advances in Differential Equations, 2011