Tohoku Mathematical Journal

Milnor fibers over singular toric varieties and nearby cycle sheaves

Yutaka Matsui and Kiyoshi Takeuchi

Full-text: Open access

Abstract

We apply sheaf-theoretical methods to monodromy zeta functions of Milnor fibrations. Classical formulas due to Kushnirenko, Varchenko and Oka, etc. on polynomials over the complex affine space will be generalized to polynomial functions over any toric variety. Moreover our results enable us to calculate the monodromy zeta functions of any constructible sheaf.

Article information

Source
Tohoku Math. J. (2), Volume 63, Number 1 (2011), 113-136.

Dates
First available in Project Euclid: 19 April 2011

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1303219938

Digital Object Identifier
doi:10.2748/tmj/1303219938

Mathematical Reviews number (MathSciNet)
MR2788778

Zentralblatt MATH identifier
1223.32019

Subjects
Primary: 32S55: Milnor fibration; relations with knot theory [See also 57M25, 57Q45]
Secondary: 32S60: Stratifications; constructible sheaves; intersection cohomology [See also 58Kxx] 32S40: Monodromy; relations with differential equations and D-modules 14M25: Toric varieties, Newton polyhedra [See also 52B20] 52B20: Lattice polytopes (including relations with commutative algebra and algebraic geometry) [See also 06A11, 13F20, 13Hxx]

Keywords
Milnor fibers Toric varieties monodromy zeta functions

Citation

Matsui, Yutaka; Takeuchi, Kiyoshi. Milnor fibers over singular toric varieties and nearby cycle sheaves. Tohoku Math. J. (2) 63 (2011), no. 1, 113--136. doi:10.2748/tmj/1303219938. https://projecteuclid.org/euclid.tmj/1303219938


Export citation

References

  • N. A'Campo, La fonction zêta d'une monodromie, Comment. Math. Helv. 50 (1975), 233–248.
  • P. Deligne, Le formalisme des cycles évanescents, SGA7, exposé XIII, Groupes de Monodromie en Géométrie Algébrique, Part II, Lecture Notes in Math. 340, Springer, Berlin, 1973.
  • A. Dimca, Sheaves in topology, Universitext, Springer-Verlag, Berlin, 2004.
  • A. Esterov, Determinantal singularities and Newton polyhedra, Proc. Steklov Inst. Math. 259 (2007), 1–34.
  • W. Fulton, Introduction to toric varieties, Princeton University Press, 1993.
  • I.-M. Gelfand, M.-M. Kapranov and A.-V. Zelevinsky, Hypergeometric functions and toral manifolds, Funct. Anal. Appl. 23 (1989), 94–106.
  • I.-M. Gelfand, M.-M. Kapranov and A.-V. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, 1994.
  • G.-G. Gusev, Monodromy zeta-functions of deformations and Newton diagrams, Rev. Mat. Complut., 22 (2009), 447–454.
  • R. Hotta, K. Takeuchi and T. Tanisaki, $D$-modules, perverse sheaves, and representation theory, Birkhäuser Boston, Inc., Boston, MA, 2008.
  • M. Kashiwara and P. Schapira, Sheaves on manifolds, Springer-Verlag, 1990.
  • A.-G. Khovanskii, Newton polyhedra and toroidal varieties, Funct. Anal. Appl. 11 (1978), 289–296.
  • A.-N. Kirillov, Zeta function of the monodromy for complete intersection singularities, J. Math. Sci. 25 (1984), 1051–1057.
  • A.-G. Kouchnirenko, Polyédres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1–31.
  • E. Looijenga, Isolated singular points of complete intersections, London Math. Soc. Lecture Notes 77, Cambridge University Press, 1984.
  • D. Massey, Hypercohomology of Milnor fibers, Topology 35 (1996), 969–1003.
  • Y. Matsui and K. Takeuchi, A geometric degree formula for $A$-discriminants and Euler obstructions of toric varieties, Adv. Math. 226 (2011), 2040–2064.
  • Y. Matsui and K. Takeuchi, Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Math. Z., to appear.
  • J. Milnor, Singular points of complex hypersurfaces, Princeton University Press, 1968.
  • P. Nang and K. Takeuchi, Characteristic cycles of perverse sheaves and Milnor fibers, Math. Z. 249 (2005), 493–511.
  • T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer-Verlag, 1988.
  • M. Oka, Principal zeta-function of nondegenerate complete intersection singularity, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (1990), 11–32.
  • M. Oka, Non-degenerate complete intersection singularity, Hermann, Paris, 1997.
  • J. Schürmann, Topology of singular spaces and constructible sheaves, Birkhäuser, 2003.
  • K. Takeuchi, Perverse sheaves and Milnor fibers over singular varieties, Adv. Stud. Pure Math. 46 (2007), 211–222.
  • K. Takeuchi, Monodromy at infinity of $A$-hypergeometric functions and toric compactifications, Math. Ann., 348 (2010), 815–831.
  • S. Tanabé, Combinatorial aspects of the mixed Hodge structure, arxiv:0405062.
  • A.-N. Varchenko, Zeta-function of monodromy and Newton's diagram, Invent. Math. 37 (1976), 253–262.