Tohoku Mathematical Journal

Momentum construction on Ricci-flat Kähler cones

Akito Futaki

Full-text: Open access


We extend Calabi ansatz over Kähler-Einstein manifolds to Sasaki-Einstein manifolds. As an application we prove the existence of a complete scalar-flat Kähler metric on Kähler cone manifolds over Sasaki-Einstein manifolds. n particular there exists a complete scalar-flat Kähler metric on the toric Kähler cone manifold constructed from a toric diagram with a constant height.

Article information

Tohoku Math. J. (2), Volume 63, Number 1 (2011), 21-40.

First available in Project Euclid: 19 April 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53C55: Hermitian and Kählerian manifolds [See also 32Cxx]
Secondary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60] 55N91: Equivariant homology and cohomology [See also 19L47]

Calabi-ansatz toric Fano manifold Sasaki-Einstein manifold


Futaki, Akito. Momentum construction on Ricci-flat Kähler cones. Tohoku Math. J. (2) 63 (2011), no. 1, 21--40. doi:10.2748/tmj/1303219934.

Export citation


  • M. Abreu, Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001), 1–24, Fields Inst. Commun. 35, Amer. Math. Soc., Providence, RI, 2003.
  • C. P. Boyer and K. Galicki, 3-Sasakian manifolds, Surv. Differ. Geom. 7 (1999), 123–184.
  • C. P. Boyer and K. Galicki, Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008.
  • C. P. Boyer and K. Galicki, Sasakian geometry, holonomy, and supersymmetry, Handbook of pseudo-Riemannian geometry and supersymmetry, 39–83, IRMA Lect. Math. Theor. Phys. 16, Eur. Math. Soc., Zürich, 2010.
  • C. P. Boyer, K. Galicki and P. Matzeu, On eta-Einstein Sasakian geometry, Comm. Math. Phys. 262 (2006), 177–208.
  • E. Calabi, Métriques Kähleriennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. 12(1979), 268–294.
  • K. Cho, A. Futaki and H. Ono, Uniqueness and examples of toric Sasaki-Einstein manifolds, Comm. Math. Phys. 277 (2008), 439–458.
  • T. Eguchi and A. J. Hanson, Asymptotically flat selfdual solutions to Euclidean gravity, Phys. Lett. B 74 (1978), 249–251.
  • A. El Kacimi-Alaoui, Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Compositio Math. 73 (1990), 57–106.
  • A. Futaki, H. Ono and G. Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Differential Geom. 83 (2009), 585–635.
  • A. D. Hwang and M. A. Singer, A moment construction for circle invariant Kähler metrics, Trans. Amer. Math. Soc. 354 (2002), 2285–2325.
  • C. LeBrun, Counter-examples to the generalized positive action conjecture, Comm. Math. Phys. 118 (1988), 591–596.
  • D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Comm. Math. Phys. 280 (2008), 611–673.
  • T. Oota and Y. Yasui, Explicit toric metric on resolved Calabi-Yau cone, Phys. Lett. B 639 (2006), 54–56.
  • H. Pedersen and Y.-S. Poon, Hamiltonian construction of Kähler-Einstein metrics and Kähler metrics of constant scalar curvature, Comm. Math. Phys. 136 (1991), 309–326.
  • S. R. Simanca, Kähler metrics of constant scalar curvature on bundles over $\boldsymbol{CP}_n$, Math. Ann. 291 (1991), 239–246.
  • C. van Coevering, Ricci-flat Kähler metrics on crepant resolutions of Kähler cones, Math. Ann. 347 (2010), 581–611.