Tohoku Mathematical Journal

Orbits, rings of invariants and Weyl groups for classical $\Theta$-groups

Takuya Ohta

Full-text: Open access

Abstract

In this paper, we study the invariant theory of Viberg's $\Theta$-groups in classical cases. For a classical $\Theta$-group naturally contained in a general linear group, we show the restriction map, from the ring of invariants of the Lie algebra of the general linear group to that of the $\Theta$-representation defined by the $\Theta$-group, is surjective. As a consequence, we obtain explicitly algebraically independent generators of the ring of invariants of the $\Theta$-representation. We also give a description of the Weyl groups of the classical $\Theta$-groups.

Article information

Source
Tohoku Math. J. (2), Volume 62, Number 4 (2010), 527-558.

Dates
First available in Project Euclid: 4 January 2011

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1294170345

Digital Object Identifier
doi:10.2748/tmj/1294170345

Mathematical Reviews number (MathSciNet)
MR2768758

Zentralblatt MATH identifier
1242.17024

Subjects
Primary: 17B70: Graded Lie (super)algebras
Secondary: 13A50: Actions of groups on commutative rings; invariant theory [See also 14L24] 14R20: Group actions on affine varieties [See also 13A50, 14L30]

Citation

Ohta, Takuya. Orbits, rings of invariants and Weyl groups for classical $\Theta$-groups. Tohoku Math. J. (2) 62 (2010), no. 4, 527--558. doi:10.2748/tmj/1294170345. https://projecteuclid.org/euclid.tmj/1294170345


Export citation

References

  • A. Daszkiewicz, W. Kraśkiewicz and T. Przebinda, Dual pairs and Kostant-Sekiguchi correspondence. II, Classification of nilpotent elements, Cent. Eur. J. Math. 3 (2005), 430–474.
  • S. Helgason, Invariant differential operators and Weyl group invariants. Harmonic analysis on reductive groups (Brunswick, ME, 1989), 193–200, Progr. Math., 101, Brikhäuser Boston, MA, 1991.
  • N. Kawanaka, Orbits and stabilizers of nilpotent elements of a graded semisimple Lie algebra, J. Fac. Sic. Univ. Tokyo. Sect. IA Math. 34 (1987), 573–597.
  • G. Kempken, Eine Darstellung des K$\ddot\rm o$chers $\tildeA_k$, Bonner Math. Schriften 137 (1982), 1–159.
  • H. Kraft and C. Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), 539–602.
  • D. Luna, Adhérences d'orbite et invariants, Invent. Math. 29 (1975), 231–238.
  • T. Ohta, The closures of nilpotent orbits in the classical symmetric pairs and their singularities, Tohoku Math. J. 43 (1991), 161–211.
  • T. Ohta, Nilpotent orbits of $\Bbb Z_4$-graded Lie algebra and geometry of moment maps associated to the dual pair ($U(p,q)$, $U(r,s)$), Publ. Res. Inst. Math. Sci. 41 (2005), 723–756.
  • T. Ohta, An inclusion between sets of orbits and surjectivity of the restriction map of rings of invariants, Hokkaido Math. J. 37 (2008), 437–454.
  • D. I. Panyushev, On invariant theory of $\theta$-groups, J. Algebra 283 (2005), 655–670.
  • V. L. Popov and E. V. Vinberg, Invariant Theory, Encyclopaedia of Mathematical Sciences, vol. 55, Algebraic Geometry IV (Russian), 137–314, 135, Itogi Nauki i Tekhniki, Akad. Nark SSSR, Vsesoyuz. Inst. Nauchn. i Tekn. Inform., Moscow, 1989.
  • G. C. Shephard and A. J. Todd, Finite unitary reflection groups, Canadian. J. Math. 6 (1954), 274–304.
  • E. V. Vinberg, The Weyl group of a graded Lie algebra, Math. USSR-Izv. 10 (1976), 463–495.