Tohoku Mathematical Journal

The intersection of two real forms in the complex hyperquadric

Hiroyuki Tasaki

Full-text: Open access

Abstract

We show that, in the complex hyperquadric, the intersection of two real forms, which are certain totally geodesic Lagrangian submanifolds, is an antipodal set whose cardinality attains the smaller 2-number of the two real forms. As a corollary of the result, we know that any real form in the complex hyperquadric is a globally tight Lagrangian submanifold.

Article information

Source
Tohoku Math. J. (2), Volume 62, Number 3 (2010), 375-382.

Dates
First available in Project Euclid: 15 October 2010

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1287148617

Digital Object Identifier
doi:10.2748/tmj/1287148617

Mathematical Reviews number (MathSciNet)
MR2742014

Zentralblatt MATH identifier
1204.53046

Subjects
Primary: 53C40: Global submanifolds [See also 53B25]
Secondary: 53D12: Lagrangian submanifolds; Maslov index

Keywords
Real form Lagrangian submanifold complex hyperquadric antipodal set 2-number globally tight

Citation

Tasaki, Hiroyuki. The intersection of two real forms in the complex hyperquadric. Tohoku Math. J. (2) 62 (2010), no. 3, 375--382. doi:10.2748/tmj/1287148617. https://projecteuclid.org/euclid.tmj/1287148617


Export citation

References

  • B.-Y. Chen and T. Nagano, Totally geodesic submanifolds of symmetric spaces, Duke Math. J. 44 (1977), 745--755.
  • B.-Y. Chen and T. Nagano, A Riemannian geometric invariant and its applications to a problem of Borel and Serre, Trans. Amer. Math. Soc. 308 (1988), 273--297.
  • T. Frankel, Manifolds with positive curvature, Pacific J. Math. 11 (1961), 165--174.
  • R. Howard, The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc. 106 (1993), No.509.
  • H. Iriyeh and T. Sakai, Tight Lagrangian surfaces in $S^2 \times S^2$, Geom. Dedicata 145 (2010), 1--17.
  • M. Itoh, A fixed point theorem for Kähler manifolds with positive holomorphic sectional curvature, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 13 (1977), 313--317.
  • K. Kenmotsu and C. Xia, Hadamard-Frankel type theorems for manifolds with partially positive curvature, Pacific J. Math. 176 (1996), 129--139.
  • D. P. S. Leung, Reflective submanifolds. IV, Classification of real forms of Hermitian symmetric spaces, J. Differential Geom. 14 (1979), 179--185.
  • Y.-G. Oh, Tight Lagrangian submanifolds in $C\rm P\sp n$, Math. Z. 207 (1991), 409--416.
  • T. Sakai, Three remarks on fundamental groups of some Riemannian manifolds, Tohoku Math. J. 22 (1970), 249--253.
  • T. Sakai, On cut loci of compact symmetric spaces, Hokkaido Math. J. 6 (1977), 136--161.
  • M. Takeuchi, Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, Tohoku Math. J. 36 (1984), 293--314.
  • M. Takeuchi, Two-number of symmetric $R$-spaces, Nagoya Math. J. 115 (1989), 43--46.
  • M. S. Tanaka and H. Tasaki, The intersection of two real forms in Hermitian symmetric spaces of compact type, preprint.