Tohoku Mathematical Journal

On Galois groups of abelian extensions over maximal cyclotomic fields

Mamoru Asada

Full-text: Open access

Abstract

We shall consider the maximal cyclotomic extension of a finite algebraic number field and its two abelian extensions, the maximal abelian extension and the maximal abelian extension with certain restricted ramification. We shall investigate the structure of these Galois groups with the action of the cyclotomic Galois group.

Article information

Source
Tohoku Math. J. (2), Volume 60, Number 1 (2008), 135-147.

Dates
First available in Project Euclid: 28 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1206734410

Digital Object Identifier
doi:10.2748/tmj/1206734410

Mathematical Reviews number (MathSciNet)
MR2419040

Zentralblatt MATH identifier
1227.11115

Subjects
Primary: 11R18: Cyclotomic extensions
Secondary: 11R23: Iwasawa theory

Citation

Asada, Mamoru. On Galois groups of abelian extensions over maximal cyclotomic fields. Tohoku Math. J. (2) 60 (2008), no. 1, 135--147. doi:10.2748/tmj/1206734410. https://projecteuclid.org/euclid.tmj/1206734410


Export citation

References

  • G. Cornell, Abhyanker's lemma and the class group, Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979), 82--88, Lecture Notes in Math. 751, Springer, Berlin, 1979.
  • K. Iwasawa, On solvable extensions of algebraic number fields, Ann. of Math. (2) 5 (1953), 548--572, also see Collected papers Vol. I [27], Springer, 2001.
  • J.-P. Serre, Cohomologie galoisienne, Fifth edition, Lecture Notes in Math. 5, Springer, Berlin, 1994.
  • K. Uchida, Galois groups of unramified solvable extensions, Tohoku Math. J. (2) 34 (1982), 311--317.