Tohoku Mathematical Journal

Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds

Andrzej Derdzinski and Witold Roter

Full-text: Open access

Abstract

We determine the local structure of all pseudo-Riemannian manifolds of dimensions greater than 3 whose Weyl conformal tensor is parallel and has rank 1 when treated as an operator acting on exterior 2-forms at each point. If one fixes three discrete parameters: the dimension, the metric signature (with at least two minuses and at least two pluses), and a sign factor accounting for semidefiniteness of the Weyl tensor, then the local-isometry types of our metrics correspond bijectively to equivalence classes of surfaces with equiaffine projectively flat torsionfree connections; the latter equivalence relation is provided by unimodular affine local diffeomorphisms. The surface just mentioned arises, locally, as the leaf space of a codimension-two parallel distribution on the pseudo-Riemannian manifold in question, naturally associated with its metric. We construct examples showing that the leaves of this distribution may form a fibration with the base which is a closed surface of any prescribed diffeomorphic type.

Our result also completes a local classification of pseudo-Riemannian metrics with parallel Weyl tensor that are neither conformally flat nor locally symmetric: for those among such metrics which are not Ricci-recurrent, the Weyl tensor has rank 1, and so they belong to the class discussed in the previous paragraph; on the other hand, the Ricci-recurrent ones have already been classified by the second author.

Article information

Source
Tohoku Math. J. (2), Volume 59, Number 4 (2007), 565-602.

Dates
First available in Project Euclid: 6 January 2008

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1199649875

Digital Object Identifier
doi:10.2748/tmj/1199649875

Mathematical Reviews number (MathSciNet)
MR2404206

Zentralblatt MATH identifier
1146.53014

Subjects
Primary: 53B30: Lorentz metrics, indefinite metrics
Secondary: 58J99: None of the above, but in this section

Keywords
Parallel Weyl tensor projectively flat connection null parallel distribution

Citation

Derdzinski, Andrzej; Roter, Witold. Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds. Tohoku Math. J. (2) 59 (2007), no. 4, 565--602. doi:10.2748/tmj/1199649875. https://projecteuclid.org/euclid.tmj/1199649875


Export citation

References

  • A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. (3) 10, Springer-Verlag, Berlin, 1987.
  • M. C. Chaki and B. Gupta, On conformally symmetric spaces, Indian J. Math. 5 (1963), 113--122.
  • A. Derdziński, On the existence of essentially conformally symmetric non-Ricci-recurrent manifolds, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 539--541.
  • A. Derdziński and W. Roter, On conformally symmetric manifolds with metrics of indices 0 and 1, Tensor (N.S.) 31 (1977), 255--259.
  • A. Derdziński and W. Roter, Some theorems on conformally symmetric manifolds, Tensor (N.S.) 32 (1978), 11--23.
  • A. Derdziński and W. Roter, Some properties of conformally symmetric manifolds which are not Ricci-recurrent, Tensor (N.S.) 34 (1980), 11--20.
  • A. Derdzinski and W. Roter, Walker's theorem without coordinates, J. Math. Phys. 47 (2006), 062504, 8 pp.
  • R. Deszcz, On hypercylinders in conformally symmetric manifolds, Publ. Inst. Math. (Beograd) (N.S.) 51(65) (1992), 101--114.
  • R. Deszcz and M. Hotloś, On a certain subclass of pseudosymmetric manifolds, Publ. Math. Debrecen 53 (1998), 29--48.
  • F. J. E. Dillen and L. C. A. Verstraelen (eds.), Handbook of differential geometry, Vol. I, North-Holland, Amsterdam, 2000.
  • R. B. Gardner, M. Kriele and U. Simon, Generalized spherical functions on projectively flat manifolds, Festschrift dedicated to Katsumi Nomizu on his 70th birthday (Leuven, 1994; Brussels, 1994), Results Math. 27 (1995), 41--50.
  • R. Ghanam and G. Thompson, The holonomy Lie algebras of neutral metrics in dimension four, J. Math. Phys. 42 (2001), 2266--2284.
  • M. Hotloś, On conformally symmetric warped products, Ann. Acad. Paedagog. Cracov. Stud. Math. 4 (2004), 75--85.
  • M. Kurita, Realization of a projectively flat space, Tensor (N.S.) 3 (1954), 128--130.
  • K. Nomizu and B. Opozda, On affine hypersurfaces with parallel nullity, J. Math. Soc. Japan 44 (1992), 693--699.
  • Z. Olszak, On conformally recurrent manifolds. II. Riemann extensions, Tensor (N.S.) 49 (1990), 24--31.
  • B. Opozda, Locally symmetric connections on surfaces, Affine differential geometry (Oberwolfach, 1991), Results Math. 20 (1991), 725--743.
  • B. Opozda, Locally homogeneous affine connections on compact surfaces, Proc. Amer. Math. Soc. 132 (2004), 2713--2721.
  • E. M. Patterson and A. G. Walker, Riemann extensions, Quart. J. Math. Oxford Ser. (2) 3 (1952), 19--28.
  • U. Pinkall, A. Schwenk-Schellschmidt and U. Simon, Geometric methods for solving Codazzi and Monge-Ampère equations, Math. Ann. 298 (1994), 89--100.
  • J. P. Rong, On $^2 K^*_n$ space, Tensor (N.S.) 49 (1990), 117--123.
  • W. Roter, On conformally symmetric Ricci-recurrent spaces, Colloq. Math. 31 (1974), 87--96.
  • H. S. Ruse, On simply harmonic ``kappa-spaces'' of four dimensions, Proc. London Math. Soc. (2) 50 (1948), 317--329.
  • R. Sharma, Proper conformal symmetries of conformal symmetric space-times, J. Math. Phys. 29 (1988), 2421--2422.
  • E. H. Spanier, Algebraic topology, Corrected reprint, Springer-Verlag, New York-Berlin, 1981.
  • T. Y. Thomas, The decomposition of Riemann spaces in the large, Monatsh. Math. Phys. 47 (1939), 388--418.
  • A. G. Walker, Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford Ser. (2) 1 (1950), 69--79.
  • A. G. Walker, Riemann extensions of non-Riemannian spaces, Convegno Internazionale di Geometria Differenziale, Italia, 1953, 64--70. Edizioni Cremonese, Roma, 1954.
  • H. Weyl, Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung, Göttinger Nachr. (1921), 99--112.