Tohoku Mathematical Journal

Anti-invariant submanifolds of Sasakian space forms, I

Kentaro Yano and Masahiro Kon

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 29, Number 1 (1977), 9-23.

Dates
First available in Project Euclid: 4 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178240692

Digital Object Identifier
doi:10.2748/tmj/1178240692

Mathematical Reviews number (MathSciNet)
MR0433356

Zentralblatt MATH identifier
0353.53033

Subjects
Primary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)

Citation

Yano, Kentaro; Kon, Masahiro. Anti-invariant submanifolds of Sasakian space forms, I. Tohoku Math. J. (2) 29 (1977), no. 1, 9--23. doi:10.2748/tmj/1178240692. https://projecteuclid.org/euclid.tmj/1178240692


Export citation

References

  • [1] D. E. BLAIR AND K. OGIUE, Geometry of integral submanifolds of contact distribution, Illinois J. Math., 19 (1975), 269-276.
  • [2] B. Y. CHEN AND K. OGIUE, On totally real submanifolds, Trans. Amer. Math. Soc., 19 (1974), 257-266.
  • [3] S. S. CHERN, M. Do CARMO AND S. KOBAYASHI, Minimal submanifolds of a sphere wit second fundamental form of constant length, Functional analysis and related fields, Springer, (1970), 59-75.
  • [4] M. KON, Totally real submanifolds in a Kaehler manifold, J. Differential Geometry, 1 (1976), 251-257.
  • [5] G. D. LUDDEN, M. OKUMURA AND K. YANO, A totally real surface in CPZ that is no totally geodesic, Proc. Amer. Math. Soc., 53 (1975), 186-190.
  • [6] G. D. LUDDEN, M. OKUMURA AND K. YANO, Anti-invariant submanifolds of almost con tact metric manifolds, to appear in Math. Ann.
  • [7] S. SASAKI, Almost contact manifolds, Lecture note I, Thoku University, (1965)
  • [8] S. YAMAGUCHI, M. KON AND T. IKAWA, On C-totally real submanifolds, J. Differentia Geometry, 11 (1976), 59-64.
  • [9] K. YANO, On ^--dimensional Riemannian spaces admitting a group of motions of orde n(n - 1)12 + 1, Trans. Amer. Math. Soc.f 74 (1953), 260-279.
  • [10] K. YANO, Differential geometry of totally real submanifolds, Topics in Differential Ge ometry, 1976, 173-184.
  • [11] K. YANO, Anti-invariant submanifolds of a Sasakian manifold with vanishing contac Bochner curvature tensor, to appear.
  • [12] K. YANO, Differential geometry of anti-invariant submanifolds of a Sasakian manifold, Bollettino U. M. I., 12 (1975), 279-296.
  • [13] K. YANO AND S. ISHIHARA, Submanifolds with parallel mean curvature vector, J. Dif ferential Geometry, 6 (1971), 95-118.
  • [14] K. YANO AND M. KON, Totally real submanifolds of complex space forms, Thoku Math J., 28 (1976), 215-225.
  • [15] K. YANO AND M. KON, Totally real submanifoldsof complex space forms II, Kdai Math Sem. Rep., 27 (1976), 385-399.