Tohoku Mathematical Journal

On Banach-Lie groups acting on finite dimensional manifolds

Hideki Omori

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 30, Number 2 (1978), 223-250.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178230027

Digital Object Identifier
doi:10.2748/tmj/1178230027

Mathematical Reviews number (MathSciNet)
MR0579603

Zentralblatt MATH identifier
0409.58009

Subjects
Primary: 22E65: Infinite-dimensional Lie groups and their Lie algebras: general properties [See also 17B65, 58B25, 58H05]
Secondary: 58B99: None of the above, but in this section

Citation

Omori, Hideki. On Banach-Lie groups acting on finite dimensional manifolds. Tohoku Math. J. (2) 30 (1978), no. 2, 223--250. doi:10.2748/tmj/1178230027. https://projecteuclid.org/euclid.tmj/1178230027


Export citation

References

  • [1] S. AGMON, On the eigenfunctions and the eigenvalues of general elliptic boundaryvalue problems, Comm. Pure Appl. Math., XV (1962), 119-147.
  • [2] L. AUSLANDER, L. Green AND F. Hahn, Flows on homogeneousspaces, Ann. Math. Studie 53, (1963).
  • [3] G. BIRKHOFF, Analytical groups, Trans. Amer. Math. Soc. 43 (1938), 61-101
  • [4] C. CHEVALLEY, Theory of Lie groups I, Princeton Univ. Press, 1946
  • [5] N. DUNFORD AND J. T. SCHWARTZ, Linear operators, I & II, Interscience, 1963
  • [6] E. B. DYNKIN, Normed Lie algebras and analytic groups, Amer. Math. Soc. Translations, 97, 1953.
  • [7] V. W. GUILLEMIN, Infinite dimensional primitive Lie algebras, J. Dif. Geom. 4 (1970), 257-282.
  • [8] P. DELA HARPE, Classical Banach-Lie groups and Banach-Lie algebras of operators i Hubert spaces, Lecture Notes in Math. Springer-Verlag, 285, 1970.
  • [9] P. R. HALMOS, A Hubert space problem book, Americanbook, 1967
  • [10] N. JACOBSON, Lie algebras, Interscience, 1962
  • [11] S. KOBAYASHI AND T. NAGANO, On filtered Lie algebras and geometric structures I III, J. Math. Mech. 13 (1964), 875-908, and 14, 679-706.
  • [12] A. KORIYAMA, Y. MAEDA AND H. OMORI, On Lie algebras of vector fields, Trans. A. M. S., 226 (1977), 89-117.
  • [13] B. MAISSEN, Lie Gruppen mit Banachramen als Parameterraum, Acta Math. 108 (1962), 229-270.
  • [14] D. MONTGOMERY AND L. ZIPPIN, Topological transformation groups, Interscience, 1955
  • [15] T. MORIMOTO AND N. TANAKA, The classification of real primitive infinite Lie algebras, J. Math. Kyoto Univ. 10 (1970), 207-243.
  • [16] H. OMORI AND P. DE LA HARPE, About interactions between Banach-Liegroups and finit dimensional manifolds, J. Math. Kyoto Univ. 12 (1972), 543-570.
  • [17] H. OMORI, Infinte dimensional Lie transformation groups, Lecture Notes, in Math. 42 Springer-Verlag, 1974.
  • [18] S. SHNIDER, The classification of real primitive infinite Lie algebras J. Diff. Geom. (1970), 81-89.
  • [19] I. M. SINGER AND S. STERNBERG, On the infinite groups of Lie and Cartan I, J. Anal Math. 15 (1965), 1-114.
  • [20] W. T. VANEST AND T. J. KORTHAGEN, Non-enlargible Lie algebras, Indag. Math. 2 (1964), 15-31.
  • [21] K. YOSHIDA, Functional analysis, Springer-Verlag, 1966