Tohoku Mathematical Journal

A multilinearization of Littlewood-Paley's $g$-function and Carleson measures

Kôzô Yabuta

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 34, Number 2 (1982), 251-275.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178229252

Digital Object Identifier
doi:10.2748/tmj/1178229252

Mathematical Reviews number (MathSciNet)
MR0664732

Zentralblatt MATH identifier
0495.47024

Subjects
Primary: 42B30: $H^p$-spaces

Citation

Yabuta, Kôzô. A multilinearization of Littlewood-Paley's $g$-function and Carleson measures. Tohoku Math. J. (2) 34 (1982), no. 2, 251--275. doi:10.2748/tmj/1178229252. https://projecteuclid.org/euclid.tmj/1178229252


Export citation

References

  • [1] O. V. BESOV, V. P. IL'IN AND S. M/NIKOLSKII, Integral representations of functions and imbedding theorems, Scripta series in Mathematics, V. H. Winston & Sons, Washington, D. C., 1978.
  • [2] A. P. CALDERON, Intermediate spaces and interpolation, the complex method, Studi Math. 24 (1964), 113-190.
  • [3] R. R. COIFMAN AND Y. MEYER, Commutateurs d'integrales singulieres et operateur multilineaires, Ann. Inst. Fourier 28 (1978), 177-202.
  • [4] R. R. COIFMAN AND Y. MEYER, Au dela des operateurs pseudo-differentiels, Asterisqu 57 (1978), 1-185.
  • [5] R. R. COIFMAN AND G. WEISS, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
  • [6] E. B. FABES, R. L. JOHNSON AND U. NERI, Spaces of harmonic functions representabl by Poisson integrals of functions in BMOand ^, ;t, Indiana Univ. Math. J. 25 (1976), 159-170.
  • [7] C. FEFFERMAN AND E. M. STEIN, Hp spaces of several variables, Acta Math. 129 (1972), 137-193.
  • [8] A. ORTIZ AND A. TROCHINSKY, On a mean value inequality, Indiana Univ. Math. J. 2 (1977), 555-566.
  • [9] E. M. STEIN, Singular integrals and differentiability properties of functions, Princeto Univ. Press, Princeton, N. J., 1970.
  • [10] E. M. STEIN AND G. WEISS, Introduction to Fourier analysis on Euclidean spaces, Princeto Univ. Press, Princeton, N. J., 1971.
  • [11] R. S. STRICHARTZ, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (1980), 539-558.
  • [12] J. O. STROMBERG, Bounded mean oscillation with Orlicz norms and duality of Hard spaces, Indiana Univ. Math. J. 28 (1979), 511-544.