Tohoku Mathematical Journal

Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups

Toshiyuki Tanisaki

Full-text: Open access

Article information

Tohoku Math. J. (2) Volume 34, Number 4 (1982), 575-585.

First available in Project Euclid: 3 May 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17]
Secondary: 14M15: Grassmannians, Schubert varieties, flag manifolds [See also 32M10, 51M35] 20G05: Representation theory


Tanisaki, Toshiyuki. Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups. Tohoku Math. J. (2) 34 (1982), no. 4, 575--585. doi:10.2748/tmj/1178229158.

Export citation


  • [1] C. DECONCINI AND C. PROCESI, Symmetric functions, conjugacy classes and the flag variety, Invent. Math. 64 (1981), 203-219.
  • [2] R. HOTTA AND T. A. SPRINGER, A specialization theorem for certain Weyl group repre sentations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), 113-127.
  • [3] S. L. KLEIMAN, Rigorous foundations of Schubert's enummerative calculus, Proc. o Symp. in Pure Math. Vol. XXVIII (1976), 445-482.
  • [4] B. KOSTANT, Lie group, representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404.
  • [5] H. KRAFT, Conjugacy classes and Weyl group representations, Tableaux de Young e foncteurs de Schur en algebre et geometrie (Conference Internationale, Toru Polgne, 1980) Asterisque 87-88 (1981), 195-205.
  • [6] H. KRAFT AND C. PROCESI, Closures of conjugacy classes of matrices are normal, Invent Math. 53 (1979), 227-247.
  • [7] H. KRAFT AND C. PROCESI, On the geometry of conjugacy classes in classical groups, preprint Bonn/Rom (1980).
  • [8] S. J. MAYER, On the characters of the Weyl group of type C, J. Algebra 33 (1975), 59-67.
  • [9] N. SPALTENSTEIN, The fixed point set of a unipotent transformation on the flag manifold, Nederl. Akad.Wetensch. Proc. Ser. A 79 (1976), 452-456.
  • [10] T. A. SPRINGER AND R. STEINBERG, Conjugacy classes, Seminar on algebraic groups an related finite groups (The Institute for Advanced Study, Princeton, N. J., 1968/69), Lecture Notes in Mathematics, Vol. 131. Springer-Verlag, Berlin (1970), 167-266.
  • [11] T. A. SPRINGER, Trigonometric sums, Green functions of finite group3 and representation of Weyl groups, Invent. Math. 36 (1976), 173-207.
  • [12] T. A. SPRINGER, A construction of representations of Weyl groups, Invent. Math. 4 (1978), 279-293.