Tohoku Mathematical Journal

Stability of certain minimal submanifolds of compact Hermitian symmetric spaces

Masaru Takeuchi

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 36, Number 2 (1984), 293-314.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178228853

Digital Object Identifier
doi:10.2748/tmj/1178228853

Mathematical Reviews number (MathSciNet)
MR0742600

Zentralblatt MATH identifier
0528.53047

Subjects
Primary: 53C35: Symmetric spaces [See also 32M15, 57T15]
Secondary: 32M15: Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras [See also 22E10, 22E40, 53C35, 57T15] 53C40: Global submanifolds [See also 53B25]

Citation

Takeuchi, Masaru. Stability of certain minimal submanifolds of compact Hermitian symmetric spaces. Tohoku Math. J. (2) 36 (1984), no. 2, 293--314. doi:10.2748/tmj/1178228853. https://projecteuclid.org/euclid.tmj/1178228853


Export citation

References

  • [1] B. Y. CHEN, P. F. LEUNG AND T. NAGANO, Totally geodesic submanifolds of symmetric spaces III, preprint.
  • [2] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
  • [3] A. IKEDA AND Y. TANIGUCHI, Spectra and eigenforms of the Laplacian on Sn and Pn(C), Osaka J. Math. 15 (1978), 515-546.
  • [4] S. KOBAYASHI, Transformation Groups in Differential Geometry, Springer-Verlag, Berlin, 1972.
  • [5] S. KOBAYASHI AND T. NAGANO, On filtered Lie algebras and geometric structures I, J. Math. Mech. 13 (1964), 875-908.
  • [6] H. B. LAWSON, JR. AND J. SIMONS, On stable currents and their application to globa problems in real and complex geometry, Ann. Math. 84 (1973), 427-450.
  • [7] C. C. MOORE, Compactifications of symmetric spaces, Amer. J. Math. 86 (1964), 201-218, 358-378.
  • [8] T. NAGANO, On the minimum eigenvalues of the Laplacians in Riemannian manifolds, Sci. Papers Coll. Gen. Ed. Univ. Tokyo 11 (1961), 177-182.
  • [9] I. SATAKE, On representations and compactifications of symmetric Riemannian spaces, Ann.Math. 71 (1960), 77-110.
  • [10] I. SATAKE, Algebraic Structures of Symmetric Domains, Iwanami Shoten, Publishers an Princeton Univ. Press, Tokyo-Princeton, 1981.
  • [11] J. SIMONS, Minimal varieties in riemannian manifolds, Ann. Math. 88 (1968), 62-105
  • [12] M. TAKEUCHI, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo, I, 12 (1965), 81-192.
  • [13] M. TAKEUCHI, Polynomial representations associated with symmetric bounded domains, Osaka J. Math. 10 (1973), 441-475.
  • [14] M. TAKEUCHI, Homogeneous Kahler submanifolds in complex projective spaces, Jap. J. Math. 4 (1978), 171-219.
  • [15] M. TAKEUCHI, On conjugate loci and cut loci of compact symmetric spaces II, Tsukub J. Math. 3 (1979), l-29.
  • [16] M. TAKEUCHI AND S. KOBAYASHI, Minimal imbeddings of ^-spaces, J. Diff. Geom. (1969), 203-215.