Tohoku Mathematical Journal

A general description of totally geodesic foliations

Grant Cairns

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 38, Number 1 (1986), 37-55.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178228535

Digital Object Identifier
doi:10.2748/tmj/1178228535

Mathematical Reviews number (MathSciNet)
MR0826763

Zentralblatt MATH identifier
0574.57012

Subjects
Primary: 53C12: Foliations (differential geometric aspects) [See also 57R30, 57R32]
Secondary: 57R30: Foliations; geometric theory

Citation

Cairns, Grant. A general description of totally geodesic foliations. Tohoku Math. J. (2) 38 (1986), no. 1, 37--55. doi:10.2748/tmj/1178228535. https://projecteuclid.org/euclid.tmj/1178228535


Export citation

References

  • [1] R. A. BLUMENTHAL AND J. J. HEBDA, De Rham decomposition theorems for foliated mani-folds, Ann. Inst. Fourier, Grenoble 33 (1983) 183-198.
  • [2] R. A. BLUMENTHAL AND J. J. HEBDA, Complementary distributions which preserve th leaf geometry and applications to totally geodesic foliations, Quart. J. Math. Oxford (2), 35 (1984) 383-392.
  • [3] R. Bo, Lectures on characteristic classes and foliations, Lecture Notes in Math. Vol 79, Springer-Verlag, Berlin, Heidelberg, New York (1972).
  • [4] H. BROWN, Codimension one totally geodesic foliations of Hn, Thoku Math. J. 36 (1984 315-340.
  • [5] G. CAIRNS, Feuilletages totalement geodesiques, Seminaire de Geom. Diff., U. S. T. L., Montpellier (1983-84) 12-36.
  • [6] G. CAIRNS, Geometrie globale des feuilletages totalement geodesiques, C. R. Acad. Sci Paris 297, ser. I Math. (1983) 525-527.
  • [7] G. CAIRNS, Feuilletages totalement geodesiques de dimension 1, 2 ou 3, C. R. Acad. Sci Paris 298, ser. I Math. (1984) 341-344.
  • [8] G. CAIRNS, Aspects cohomologiques des feuilletages totalement geodesiques, C. R. Acad Sci. Paris 299, ser. I Math. (1984) 1017-1019.
  • [9] G. CAIRNS AND E. GHYS, Totally geodesic foliations on 4-manifolds, to appear
  • [10] Y. CARRIERE AND E. GHYS, Feuilletages totalement geodesiques, An. Acad. Brasil Cienc 53(3), (1981) 427-432.
  • [11] A. EL KACIMI-ALAOUI AND G. HECTOR, Analyse globale sur espace des feuilles d'u feuilletage riemannien, Pub. I. R. M. A., Lille, 5, Fasc. 3 (1983).
  • [12] E. GHYS, Classification des feuilletages totalement geodesiques de codimension un, Comment. Math. Helv. 58(1983) 543-572.
  • [13] D. L. JOHNSON AND A. M. NAVEIRA, A topological obstruction to the geodesibility of foliation of odd dimension, Geom. Dedicata 11(1981) 347-352.
  • [14] D. L. JOHNSON AND L. B. WHITT, Totally geodesic foliations, J. Differential Geom. 1 (1980) 225-235.
  • [15] A LICHNEROWICZ, Theorie globale des connexions et des groupes d'holonomie, Consigli Nazionale delle Ricerche, Monografie Matematiche 2, Ed. Cremonese (1955).
  • [16] P. MOLINO, Connexions et G-structures sur les varietes feuilletees, Bull. Soc. Math., Paris 92(1968) 59-63.
  • [17] P. MOLINO, Proprietes cohomologiques es proprietes topologiques des feuilletages a con nexion transverse projetable, Topology 12(1973) 317-325.
  • [18] P. MOLINO, Actions des groupes de Lie et pseudo-connexions, Lecture Notes in Math., Vol. 484, Springer-Verlag, Berlin, Heidelberg, New York (1974) 153-161.
  • [19] P. MOLINO, Etude des feuilletages transversalement complets et applications, Ann. Sci Ecole Norm. Sup. 10(1977) 289-307.
  • [20] P. MOLINO, Geometrie globale des feuilletages riemanniens, Proc. Kon. Nederland Adad ser. A, 85(1), (1982) 45-76.
  • [21] P. MOLINO, Feuilletages riemanniens, Monograph, U. S. T. L., Montpellier (1982)
  • [22] R. PALAIS, A global formulation of the Lie theory of transformation groups, Mem Amer. Math. Soc. 22(1957).
  • [23] B. REINHART, Foliated manifolds with bundle-like metrics, Ann. Math. 69(1959) 119-132
  • [24] B. REINHART, Harmonic integrals on foliated manifolds, Amer. J. Math. 81(1959) 529-536
  • [25] H. RUMMLER, Quelques notions simples en geometrie riemannienne et leurs application aux feuilletages compacts, Comment. Math. Helv. 54(1979) 224-239.
  • [26] I. SATAKE, On a generalisation of the notion of manifold, Proc. Nat. Acad. Sc. U. S. A., 42(1956) 359-363.
  • [27] V. SERGIESCU, Cohomologie basique et dualite des feuilletages riemanniens, to appear i Ann. Inst. Fourier, Grenoble.
  • [28] D. SULLIVAN, A foliation by geodesies is characterized by having no tangent homologies, J. Pure Appl. Algebra, 13(1978) 101-104.