Tohoku Mathematical Journal
- Tohoku Math. J. (2)
- Volume 39, Number 1 (1987), 41-59.
Lusin functions on product spaces
Full-text: Open access
Article information
Source
Tohoku Math. J. (2), Volume 39, Number 1 (1987), 41-59.
Dates
First available in Project Euclid: 3 May 2007
Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178228367
Digital Object Identifier
doi:10.2748/tmj/1178228367
Mathematical Reviews number (MathSciNet)
MR0876451
Zentralblatt MATH identifier
0652.42007
Subjects
Primary: 42B30: $H^p$-spaces
Secondary: 42B20: Singular and oscillatory integrals (Calderón-Zygmund, etc.) 42B25: Maximal functions, Littlewood-Paley theory 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Citation
Sato, Shuichi. Lusin functions on product spaces. Tohoku Math. J. (2) 39 (1987), no. 1, 41--59. doi:10.2748/tmj/1178228367. https://projecteuclid.org/euclid.tmj/1178228367
References
- [1] A. P. CALDERON AND A. TORCHINSKY, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1-64.Mathematical Reviews (MathSciNet): MR417687
Zentralblatt MATH: 0315.46037
Digital Object Identifier: doi:10.1016/0001-8708(75)90099-7 - [2] A. P. CALDERON AND A. TORCHINSKY, Parabolic maximal functions associated with distribution, II, Advances in Math. 24 (1977), 101-171.Mathematical Reviews (MathSciNet): MR450888
Zentralblatt MATH: 0355.46021
Digital Object Identifier: doi:10.1016/S0001-8708(77)80016-9 - [3] L. CARLESON, Two remarks on H1 and BMO, Advances in Math. 22 (1976), 269-277Mathematical Reviews (MathSciNet): MR477058
Zentralblatt MATH: 0357.46058
Digital Object Identifier: doi:10.1016/0001-8708(76)90095-5 - [4] R. R. COIPMAN AND B. DAHLBERG, Singular integral characterization of nonisotropic H spaces and the F. and M. Riesz theorem, Proc. Symp. in pure Math. 35 part 1 (1979), 231-234.
- [5] R. R. COIFMAN AND G. WEISS, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.Mathematical Reviews (MathSciNet): MR447954
Zentralblatt MATH: 0358.30023
Digital Object Identifier: doi:10.1090/S0002-9904-1977-14325-5
Project Euclid: euclid.bams/1183538894 - [6] E. B. FABES AND N. M. RIVIERE, Singular integrals with mixed homogeneity, Studi Math. 27 (1966), 19-38.
- [7] C. FEFFERMAN, Estimates for double Hubert transforms, Studia Math. 44 (1972), 1-15
- [8] C. FEFFERMAN AND E. M. STEIN, Hp spaces of several variables, Acta Math. 129 (1972), 138-193.Mathematical Reviews (MathSciNet): MR447953
Zentralblatt MATH: 0257.46078
Digital Object Identifier: doi:10.1007/BF02392215 - [9] R. FEFFERMAN AND E. M. STEIN, Singular integrals on product spaces, Advances in Math 45 (1982), 117-143.Mathematical Reviews (MathSciNet): MR664621
Zentralblatt MATH: 0517.42024
Digital Object Identifier: doi:10.1016/S0001-8708(82)80001-7 - [10] R. F. GUNDY, Inegalites pour martingales a un et deux indices: L'espaces Hp, Lectur Notes in Math. 774, Springer-Verlag, Berlin, Heidelberg and New York, 1980 (pp. 251-334).
- [11] R. F. GUNDY AND E. M. STEIN, Hp theory for the poly-disc, Proc. Natl. Acad. Sci. US 76 (1979), 1026-1029.Mathematical Reviews (MathSciNet): MR524328
Zentralblatt MATH: 0405.32002
Digital Object Identifier: doi:10.1073/pnas.76.3.1026
JSTOR: links.jstor.org - [12] A. KOLMOGOROFF, Sur les fonctions harmoniques conjuguees et les series de Fourier, Fund. Math. 7 (1925), 23-28.
- [13] M. P. MALLIAVIN AND P. MALLIAVIN, Integrates de Lusin-Caldern pour les fonction biharmoniques, Bull. Sci. Math. 101 (1977), 357-384.
- [14] N. M. RIVIERE, Singular integrals and multiplier operators, Ark. Mat.9 (1971), 243-278Mathematical Reviews (MathSciNet): MR440268
Zentralblatt MATH: 0244.42024
Digital Object Identifier: doi:10.1007/BF02383650 - [15] E. M. STEIN, On limits of sequences of operators, Ann. of Math. 74 (1961), 140-170Mathematical Reviews (MathSciNet): MR125392
Zentralblatt MATH: 0103.08903
Digital Object Identifier: doi:10.2307/1970308
JSTOR: links.jstor.org - [16] E. M. STEIN, A variant of the area integral, Bull. Sci. Math. 103 (1979), 449-461
- [17] E. M. STEIN AND G. WEISS, Introduction to Fourier analysis on Euclidean spaces, Prin ceton Univ. Press, 1971.
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Multiplicative Square Functions
González, María José and Nicolau, Artur, Revista Matemática Iberoamericana, 2004 - Intrinsic Square Function Characterizations of Variable Weak Hardy Spaces
Yan, Xianjie, Taiwanese Journal of Mathematics, 2019 - Regularite De Fonctions Aleatoires Gaussiennes a Valeurs Vectorielles
Fernique, X., The Annals of Probability, 1990
- Multiplicative Square Functions
González, María José and Nicolau, Artur, Revista Matemática Iberoamericana, 2004 - Intrinsic Square Function Characterizations of Variable Weak Hardy Spaces
Yan, Xianjie, Taiwanese Journal of Mathematics, 2019 - Regularite De Fonctions Aleatoires Gaussiennes a Valeurs Vectorielles
Fernique, X., The Annals of Probability, 1990 - Hardy spaces of operator-valued analytic functions
Chen, Zeqian, Illinois Journal of Mathematics, 2009 - Intrinsic square function characterizations of weak Musielak–Orlicz Hardy spaces
Yan, Xianjie, Banach Journal of Mathematical Analysis, 2019 - Existence and boundedness of parametrized Marcinkiewicz integral with rough kernel on Campanato spaces
Ding, Yong, Xue, Qingying, and Yabuta, Kôzô, Nagoya Mathematical Journal, 2006 - Lusin's Condition \(\mathbf{(N)}\) and Foran's condition \(\mathbf{(M)}\) are Equivalent for Borel Functions that are \(\mathbf{VBG}\) on a Borel Set
Ene, Vasile, Real Analysis Exchange, 1998 - The intrinsic square function
Wilson, Michael, Revista Matemática Iberoamericana, 2007 - Analytic Fourier–Feynman transforms and convolution products associated with Gaussian processes on Wiener space
Chang, Seung Jun and Choi, Jae Gil, Banach Journal of Mathematical Analysis, 2017 - Lusin-Sierpinski Index for the Internal Sets
Zivaljevic, Bosko, Journal of Symbolic Logic, 1992