Tohoku Mathematical Journal

A characterization of the Cartan hypersurface in a sphere

U-Hang Ki and Hisao Nakagawa

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 39, Number 1 (1987), 27-40.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178228366

Digital Object Identifier
doi:10.2748/tmj/1178228366

Mathematical Reviews number (MathSciNet)
MR0876450

Zentralblatt MATH identifier
0597.53048

Subjects
Primary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]
Secondary: 53C40: Global submanifolds [See also 53B25]

Citation

Ki, U-Hang; Nakagawa, Hisao. A characterization of the Cartan hypersurface in a sphere. Tohoku Math. J. (2) 39 (1987), no. 1, 27--40. doi:10.2748/tmj/1178228366. https://projecteuclid.org/euclid.tmj/1178228366


Export citation

References

  • [1] E. CAKTAN, Families de surfaces isoparametriques dans les espaces a courbure constante, Ann.di Mat. 17 (1938), 177-191.
  • [2] E. CARTAN, Sur des families remarquables d'hypersurfaces isoparametriques dans le espaces spheriques, Math. Zeit. 45 (1939), 335-367.
  • [3] J. E. D'ATRi AND H. K. NICKERSON, Divergence-preserving geodesic symmetries, J. Dif ferential Geometry 3 (1969), 467-476.
  • [4] J. E. D'ATRi AND H. K. NICKERSON, Geodesicsymmetries in spaces with special curvatur tensors, J. Differential Geometry 9 (1974), 251-262.
  • [5] S. KOBAYASHI, Compact homogeneous hypersurfaces, Trans. Amer. Math. Soc. 88 (1958), 137-143.
  • [6] A. GRAY, Einstein-like manifolds which are not Einstein, Geometriae Dedicata 7 (1978), 259-280.
  • [7] I. MOGI AND H. NAKAGAWA, On hypersurfaces with parallel Ricci tensor in a Riemannia manifold of constant curvature, Differential Geometry in honor of K. Yano, Kinokuniya, Tokyo, 1972, 267-279.
  • [8] H. F. MUNZNER, Isoparametrische Hyperflachen in Spharen I and II, Math. Ann. 25 (1980), 57-71; ibid. 256 (1981), 215-232.
  • [9] H. OZEKI AND M. TAKEUCHI, On some types of isoparametric hypersurfaces in sphere I and II, Thoku Math. J. 27 (1975), 515-559; ibid. 28 (1976), 7-55.
  • [10] C. K. PENG AND C. L. TERNG, Minimal hypersurfaces of spheres with constant scala curvature, Seminar on minimal submanifolds, Ann. of Math. Studies, 103, Princeton Univ. Press, 1983, 177-205.
  • [11] P. J. RYAN, Homogeneity and some curvature conditions for hypersurfaces, Thok Math. J. 21 (1969), 363-388.
  • [12] U. SIMON, On differential operators of second order on Riemannian manifolds with non positive curvature, Colloq. Math. 31 (1974), 223-229.
  • [13] T. SUMITOMO, On a certain class of Riemannian homogeneous spaces, Colloq. Math. 2 (1972), 129-133.
  • [14] R. TAKAGI, Homogeneous hypersurfaces in a sphere with the type number 2, Tdhok Math. J. 23 (1971), 49-58.
  • [15] R. TAKAGI AND T. TAKAHASHI, On the principal curvature on homogeneous hypersurface in a sphere, Differential Geometry in honor of K. Yano, Kinokuniya, Tokyo, 1972, 469-481.
  • [16] T. TAKAHASHI, Homogeneous hypersurfaces in spaces of constant curvature, J. Math Soc. Japan 22 (1970), 395-410.
  • [17] F. TRICERRI AND L. VANHECKE, Homogeneous structures on Riemannian manifolds, Londo Math. Soc. Lecture Notes 83, 1983.
  • [18] L. VANHECKE, Some solved and unsolved problems about harmonic and commutativ spaces, Bull. Soc. Math. Belg. 34 (1982), 1-24.