Tohoku Mathematical Journal

The Jacobians and the discriminants of finite reflection groups

Hiroaki Terao

Full-text: Open access

Article information

Source
Tohoku Math. J. (2) Volume 41, Number 2 (1989), 237-247.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178227822

Digital Object Identifier
doi:10.2748/tmj/1178227822

Mathematical Reviews number (MathSciNet)
MR0996012

Zentralblatt MATH identifier
0679.20042

Subjects
Primary: 32C40
Secondary: 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17] 20H99: None of the above, but in this section

Citation

Terao, Hiroaki. The Jacobians and the discriminants of finite reflection groups. Tohoku Math. J. (2) 41 (1989), no. 2, 237--247. doi:10.2748/tmj/1178227822. https://projecteuclid.org/euclid.tmj/1178227822


Export citation

References

  • [1] V I ARNOL'D, Wavefront evolution and equivariant Morse Lemma, Comm on Pure and Appl Math 29 (1976), 557-582
  • [2] V I ARNOL'D, Indices of singular points of 1-forms on a manifold with boundary, convolution o invariants of reflection groups, and singular projections of smooth surfaces, Russian Math Surveys 34(1979), 1-42
  • [3] N BOURBAKI, Groupes et algebres de Lie, Chapitres 4, 5 et 6, Masson, Paris, 198
  • [4] C CHEVALLEY, Invariants of finite groups generated by reflections, Amer J Math 77 (1955), 778-78
  • [5] D G NORTHCOTT, Lessons on rings, modules and multiplicities, Cambridge Univ Press, 196
  • [6] P ORLC AND L SOLOMON, Unitary reflection groups and cohomology, Inventiones math 59(1980), 77-94
  • [7] G -C ROTA, On the Foundations of Combinatorial Theory I Theory of Mbius Functions, Wahrscheinlichkeitsrechnung 2 (1964), 340-368.
  • [8] K. SAITO, On the uniformization of complements of discriminant loci, Seminar notes, AMS Summe Institute, Williamstown, 1975
  • [9] K SAITO, Theory of logarithmic differential forms and logarithmic vector fields, J Fac Sci Uni Tokyo Sect IA Math 27 (1980), 265-291
  • [10] K SAITO, Einfach elliptische Singularitaten, Inventiones math 23 (1974), 289-32
  • [11] G SCHEJA AND U SOTRCH, Uber Spurfunktionen bei vollstandigen Durchschnitten, J Reine Ange Math 278/279(1975), 174-190
  • [12] G SCHWARZ, Lifting smooth homotopies of orbit spaces, Publ I H E S 51 (1980), 37-13
  • [13] L SOLOMON AND H TERAO, A formula for the characteristic polynomial of an arrangement Advances i Math 64 (1987), 305-325
  • [14] R P STANLEY, Relative invariants of finite groups generated by pseudoreflections, J Algebra 49 (1977), 134-148
  • [15] R P. STANLEY, Enumerative combinatorics, vol I, Wadsworth & Brooks/Cole, Monterey, 198
  • [16] R. STEINBERG, Invariants of finite reflection groups, Canad J. Math 12 (1960), 616-61
  • [17] H TERAO, Arrangements of hyperplanes and their freeness I, J Fac Sci Univ Tokyo Sect IA Math 2 (1980), 293-312
  • [18] H TERAO, Free arrangements and unitary reflection groups, Proc Japan Acad 56A (1980), 389-39
  • [19] H. TERAO, Generalized exponents of a free arrangement of hyperplanes and Shephard-Todd-Brieskor formula, Inventiones math 63 (1981), 159-179
  • [20] H TERAO, Free arrangements of hyperplanes over an arbitrary field, Proc Japan Acad 59A (1983), 301-303
  • [21] H TERAO, Discriminant of a holomorphic map and logarithmicvector fields, J Fac Sci Univ of Toky Sect IA Math 30 (1983), 379-391