Tohoku Mathematical Journal

A new construction of a compactification of ${\bf C}^3$

Mikio Furushima and Noboru Nakayama

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 41, Number 4 (1989), 543-560.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178227726

Digital Object Identifier
doi:10.2748/tmj/1178227726

Mathematical Reviews number (MathSciNet)
MR1025321

Zentralblatt MATH identifier
0703.14025

Subjects
Primary: 14J30: $3$-folds [See also 32Q25]
Secondary: 14E05: Rational and birational maps 14J45: Fano varieties

Citation

Furushima, Mikio; Nakayama, Noboru. A new construction of a compactification of ${\bf C}^3$. Tohoku Math. J. (2) 41 (1989), no. 4, 543--560. doi:10.2748/tmj/1178227726. https://projecteuclid.org/euclid.tmj/1178227726


Export citation

References

  • [1] M. FURUSHIMA, Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space C3, Nagoya Math. J 104 (1986), 1-28.
  • [2] M FURUSHIMA, On complex analytic compactifications of C3, preprint Max-Planck-Institut fu Mathematik, Bonn, 87-19 (1987).
  • [3] M. FURUSHIMA, On complex analytic compactifications of C3 (II), preprint Max-Planck-Institut fu Mathematik, Bonn, 87-45 (1987).
  • [4] R. HARTSHORNE, Algebraic Geometry, Graduate Texts in Math. 49, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
  • [5] V A ISKOVSKIH, Anticanonical models of three dimensional algebraic varieties, J Soviet Math 13-1 (1980), 745-814
  • [6] Y. KAWAMATA, K. MATSUDA AND K. MATSUKI, Introduction to the minimalmodel problem, in Algebrai Geometry, Sendai, (T. Oda, ed.) Advanced Studies in Pure Math. 10 (1987), Kinokuniya, Tokyo and North-Holland, Amsterdam, 551-590.
  • [7] D. MORRISON, The birational geometry of surfaces with rational double points, Math. Ann. 271 (1985), 415-438.
  • [8] C. OKONEK, M. SCHNEIDER AND H SPINDLER, Vector bundles on complex projective spaces, Progres in Math 3, Birkhauser, Boston, Basel, Stuttgart, 1980.
  • [9] T PETERNELL AND M SCHNEIDER, Compactifications of C3 (I), Math. Ann. 280 (1988), 129-14
  • [10] D QUILLEN, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171
  • [11] M REID, Minimal models of canonical 3-folds, in Algebraic Varieties and Analytic Varieties (S litaka, ed), Advanced Studies in Pure Math. 1(1983), Kinokuniya, Tokyo and North-Holland, Amsterdam, 131-180.