Tohoku Mathematical Journal

Affine surfaces with higher order parallel cubic form

Luc Vrancken

Full-text: Open access

Article information

Tohoku Math. J. (2), Volume 43, Number 1 (1991), 127-139.

First available in Project Euclid: 3 May 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53A15: Affine differential geometry
Secondary: 53B05: Linear and affine connections


Vrancken, Luc. Affine surfaces with higher order parallel cubic form. Tohoku Math. J. (2) 43 (1991), no. 1, 127--139. doi:10.2748/tmj/1178227541.

Export citation


  • [B] W BLASCHKE, Vorlesungen ber Differentialgeometrie, II Affine Differentialgeometrie, Berlin, Springer, 1923
  • [D-N-V] F DILLEN, K NOMIZU AND L. VRANCKEN, Conjugate connectionsand Radon's theorem in affin differential geometry, Monatsh Math. 109 (1990), 221-235.
  • [L-P] A. -M Li AND G. PENN, Uniqueness theorems in affine differential geometry, part 2, Results i Math. 13 (1988), 308-317
  • [M-N] M. MAGID AND K. NOMIZU, On affine surfaces whose cubic forms are parallel with respect to th affine metric, Proc. Japan Acad. Science 65, Ser A (1989), 215-218.
  • [M-R] M. A. MAGID AND P. J. RYAN, Flat affine spheres in /?3, to appear in Geom Dedicata
  • [N] K. NOMIZU, What is affine differential geometry?, Differential Geometry Meeting, Univ. Munste 1982, Tagungsbericht 42^3 (1982)
  • [N-P] K. NOMIZU AND U. PINKALL, On the geometry of affine immersions, Math. Z. 195 (1987), 165-178
  • [N-P] K. NOMIZU AND U. PINKALL, Cubic form theorems for affine immersions, Results in Math 1 (1988), 338-362
  • [N-P] K. NOMIZU AND U. PINKALL, Cayley surfaces in affine differential geometry, Thoku Math. J. 41 (1989), 589-596
  • [V] L VRANCKEN, Affine higher order parallel hypersurfaces, Ann. Fac. Sci Toulouse 9 (1988), 341-353