Tohoku Mathematical Journal

On compact conformally flat $4$-manifolds

Hiroyasu Izeki

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 44, Number 2 (1992), 299-304.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178227345

Digital Object Identifier
doi:10.2748/tmj/1178227345

Mathematical Reviews number (MathSciNet)
MR1161620

Zentralblatt MATH identifier
0785.53029

Subjects
Primary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]

Citation

Izeki, Hiroyasu. On compact conformally flat $4$-manifolds. Tohoku Math. J. (2) 44 (1992), no. 2, 299--304. doi:10.2748/tmj/1178227345. https://projecteuclid.org/euclid.tmj/1178227345


Export citation

References

  • [1] T. AUBIN, Metriques riemanniennes et courbure, J. Diff. Geom. 4 (1970), 383-424.
  • [2] T. AUBIN, Equation differentielles non lineaires et probleme de Yamabe concernant la courbur scalaire, J. Math. Pures et Appl. 55 (1976), 269-296.
  • [3] A. BESSE, Geometrie riemannienne en dimension 4, Cedic-Fernand Nathan, Paris, 1981
  • [4] M. ITOH, Yamabe metrics and the space of conformal structures, preprint
  • [5] O. KOBAYASHI, Scalar curvature of a metric with unit volume, Math. Ann. 279 (1987), 253-265
  • [6] O. KOBAYASHI, On the Yamabe problem (in Japanese), Seminar on Math. Sc. 16 (1990), Dept. o Math. Keio Univ.
  • [7] O. KOBAYASHI, Yamabe metrics and conformal transformations, Thoku Math. J. 44 (1992), 251-258
  • [8] S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry, Vol. 1, Interscience, Wiley, Ne York, 1963.
  • [9] J. LAFONTAINE, Conformal geometry from the Riemannian viewpoint, in Conformal Geometry, edite by R. S. Kulkarni and U. Pinkall, Friedr. Vieweg & Sohn, Braunschweig, 1988.
  • [10] M. OBATA, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom 6(1971), 247-258.
  • [11] R. SCHOEN, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff Geom. 20 (1984), 479-495.
  • [12] N. S. TRUDINGER, Remarks concerning the conformal deformation of Riemannian structures o compact manifolds, Ann. Scuola Norm. Sup. di Pisa, ser. 3, 22 (1968), 265-274.
  • [13] H. YAMABE, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 1 (1960), 21-37.