Tohoku Mathematical Journal
- Tohoku Math. J. (2)
- Volume 44, Number 2 (1992), 177-200.
Normal two-dimensional hypersurface triple points and the Horikawa type resolution
Full-text: Open access
Article information
Source
Tohoku Math. J. (2), Volume 44, Number 2 (1992), 177-200.
Dates
First available in Project Euclid: 3 May 2007
Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178227335
Digital Object Identifier
doi:10.2748/tmj/1178227335
Mathematical Reviews number (MathSciNet)
MR1161610
Zentralblatt MATH identifier
0801.14011
Subjects
Primary: 14J17: Singularities [See also 14B05, 14E15]
Secondary: 14B05: Singularities [See also 14E15, 14H20, 14J17, 32Sxx, 58Kxx] 32S10: Invariants of analytic local rings 32S25: Surface and hypersurface singularities [See also 14J17] 32S55: Milnor fibration; relations with knot theory [See also 57M25, 57Q45]
Citation
Ashikaga, Tadashi. Normal two-dimensional hypersurface triple points and the Horikawa type resolution. Tohoku Math. J. (2) 44 (1992), no. 2, 177--200. doi:10.2748/tmj/1178227335. https://projecteuclid.org/euclid.tmj/1178227335
References
- [AK] T. ASHIKAGA AND K. KONNO, Examples of degenerations of Castelnuovo surfaces, J. Math. Soc. Japan 43 (1991), 229-246.Mathematical Reviews (MathSciNet): MR1096433
Zentralblatt MATH: 0752.14038
Digital Object Identifier: doi:10.2969/jmsj/04320229
Project Euclid: euclid.jmsj/1227108214 - [D] A. DURFEE, The signature of smoothings of complex surface singularities, Math. Ann. 232 (1978), 85-98.Mathematical Reviews (MathSciNet): MR466620
Zentralblatt MATH: 0346.32016
Digital Object Identifier: doi:10.1007/BF01420624 - [FN] A. FUJIKI AND S. NAKANO, Supplement to "On the inverse of monoidal transformation", Publ Res. Inst. Math. Sci., Kyoto Univ. 7 (1972), 637-644.Mathematical Reviews (MathSciNet): MR294712
Zentralblatt MATH: 0234.32019
Digital Object Identifier: doi:10.2977/prims/1195193401 - [FMS] S. FUKUHARA, Y. MATUMOTO AND K. SAKAMOTO, Casson's invariant of Seifert homology 3-sphere, Math. Ann. 287 (1990) 275-285.Mathematical Reviews (MathSciNet): MR1054569
Zentralblatt MATH: 0674.57014
Digital Object Identifier: doi:10.1007/BF01446893 - [HI] E. HORIKAWA, On deformations of quintic surfaces, Invent. Math. 31 (1975), 43-85Zentralblatt MATH: 0317.14018
Mathematical Reviews (MathSciNet): MR1573789
Digital Object Identifier: doi:10.1007/BF01389865 - [H2] E. HORIKAWA, On algebraic surfaces with pencils of curves of genus two, in Complex Analysis an Algebraic Geometry (W. L. Baily, Jr. and T. Shioda eds.), pp. 79-90, a volume dedicated to K. Kodaira, Iwanami Shoten and Cambridge Univ. Press, Tokyo and Cambridge, 1977.Mathematical Reviews (MathSciNet): MR453756
Zentralblatt MATH: 0349.14021
Digital Object Identifier: doi:10.1017/CBO9780511569197.006 - [H3] E. HORIKAWA, Algebraic surfaces of general type with small c2v V. J. Fac. Sci. Univ. Tokyo 2 (1981), 745-755.
- [L] H. LAUFER, On for surface singularities, in Several Complex Variables, pp. 45-49, Proc. Symposi in Pure Math. 30, Providence, R. I., Amer. Math. Soc, 1977.
- [Mil] J. MILNOR, Singular Points of Complex Hypersurfaces, Ann. of Math. Studies 61 (1968), Princeto Univ. Press.
- [Mir] R. MIRANDA, Triple covers in algebraic geometry, Amer. J. Math. 107 (1985), 1123-1158Mathematical Reviews (MathSciNet): MR805807
Zentralblatt MATH: 0611.14011
Digital Object Identifier: doi:10.2307/2374349
JSTOR: links.jstor.org - [NW] W. NEUMANN AND J. WAHL, Casson invariant of links of singularities, Comment. Math. Helvetic 65 (1990), 58-78.Mathematical Reviews (MathSciNet): MR1036128
Zentralblatt MATH: 0704.57007
Digital Object Identifier: doi:10.1007/BF02566593 - [P] U. PERSSON, On Chern invariants of surfaces of general type, Compositio Math. 43 (1981), 3-58
- [SI] K. SAITO, Einfach-elliptische Singularitaten, Invent. Math. 23 (1974), 289-325Mathematical Reviews (MathSciNet): MR354669
Zentralblatt MATH: 0296.14019
Digital Object Identifier: doi:10.1007/BF01389749 - [S2] K. SAITO, The zeroes of characteristic function f for the exponents of a hypersurface isolate singular points, in Algebraic varieties and Analytic varieties (S. Iitaka ed.), pp. 195-217, Advanced Studies in Pure Math. 1, Kinokuniya and North Holland, Tokyo and Amsterdam, 1983.
- [Tl] M. TOMARI, A geometric characterization of normal two-dimensional singularities of multiplicit two with/?fll, Publ. Res. Inst. Math. Sci., Kyoto Univ. 20 (1984), 1-20.Mathematical Reviews (MathSciNet): MR736088
Zentralblatt MATH: 0545.14030
Digital Object Identifier: doi:10.2977/prims/1195181824 - [T2] M. TOMARI, The inequality 8/?3 for hypersurface two-dimensional isolated double points, preprint.
- [W] J. WAHL, Smoothings of normal surface singularities, Topology 20 (1981), 219-246Mathematical Reviews (MathSciNet): MR608599
Zentralblatt MATH: 0484.14012
Digital Object Identifier: doi:10.1016/0040-9383(81)90001-X - [XY1] Y. Xu AND S. S. T. YAU, The inequality \2pg – 4 for hypersurface weakly elliptic singularities, in Singularities 1986, Iowa (R. Randell, ed.), pp. 317-344, Contemporary Math. 90, Amer. Math. Soc, 1989.
- [XY2] Y. Xu AND S. S. T. YAU, Durfee conjecture and coordinate free characterization of homogeneou singularities, preprint.
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- On the estimate of the arithmetic genus for normal two-dimensional singularities on double coverings
Takamura, Masakazu, Tsukuba Journal of Mathematics, 2004 - Maximal ideal cycles over normal surface singularities of Brieskorn type
Konno, Kazuhiro and Nagashima, Daisuke, Osaka Journal of Mathematics, 2012 - Nonisolated forms of rational triple point singularities of surfaces and their resolutions
Sharland, A. Altıntaş, Çevik, G., and Tosun, M., Rocky Mountain Journal of Mathematics, 2016
- On the estimate of the arithmetic genus for normal two-dimensional singularities on double coverings
Takamura, Masakazu, Tsukuba Journal of Mathematics, 2004 - Maximal ideal cycles over normal surface singularities of Brieskorn type
Konno, Kazuhiro and Nagashima, Daisuke, Osaka Journal of Mathematics, 2012 - Nonisolated forms of rational triple point singularities of surfaces and their resolutions
Sharland, A. Altıntaş, Çevik, G., and Tosun, M., Rocky Mountain Journal of Mathematics, 2016 - Inequalities for the Casorati Curvatures of Real Hypersurfaces in Some Grassmannians
Park, Kwang-Soon, Taiwanese Journal of Mathematics, 2018 - A new example of a uniformly Levi degenerate hypersurface in C3
Gaussier, Hervé and Merker, Joël, Arkiv för Matematik, 2003 - Linearized stability analysis of surface diffusion for hypersurfaces with triple lines
DEPNER, Daniel and GARCKE, Harald, Hokkaido Mathematical Journal, 2013 - Base points of polar curves on a surface of type zn = f(x,y)
Snoussi, Jawad, Kodai Mathematical Journal, 2005 - The structure of algebraic embeddings of $\mathbb{C}^{2}$ into $\mathbb{C}^{3}$ (the normal quartic hypersurface case. II)
Ohta, Tomoaki, Osaka Journal of Mathematics, 2009 - No 2-knot has triple point number two or three
Satoh, Shin, Osaka Journal of Mathematics, 2005 - Dimension result and KPZ formula for two-dimensional multiplicative cascade processes
Jin, Xiong, The Annals of Probability, 2012