Tohoku Mathematical Journal
- Tohoku Math. J. (2)
- Volume 44, Number 4 (1992), 471-521.
Quantum multilinear algebra
Mitsuyasu Hashimoto and Takahiro Hayashi
Full-text: Open access
Article information
Source
Tohoku Math. J. (2), Volume 44, Number 4 (1992), 471-521.
Dates
First available in Project Euclid: 3 May 2007
Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178227246
Digital Object Identifier
doi:10.2748/tmj/1178227246
Mathematical Reviews number (MathSciNet)
MR1190917
Zentralblatt MATH identifier
0776.17007
Subjects
Primary: 17B37: Quantum groups (quantized enveloping algebras) and related deformations [See also 16T20, 20G42, 81R50, 82B23]
Secondary: 15A69: Multilinear algebra, tensor products
Citation
Hashimoto, Mitsuyasu; Hayashi, Takahiro. Quantum multilinear algebra. Tohoku Math. J. (2) 44 (1992), no. 4, 471--521. doi:10.2748/tmj/1178227246. https://projecteuclid.org/euclid.tmj/1178227246
References
- [1] E. ABE, Hopf algebras, Cambridge Tracts in Math. 74, Cambridge Univ. Press, 1980.
- [2] K. AKIN AND D. A. BUCHSBAUM, Characteristic-free representation theory of the general linear group, Adv. in Math. 58 (1985), 149-200.Mathematical Reviews (MathSciNet): MR814749
Zentralblatt MATH: 0607.20021
Digital Object Identifier: doi:10.1016/0001-8708(85)90115-X - [3] K. AKIN AND D. A. BUCHSBAUM, Characteristic-free representation theory of the general linear grou II Homological considerations, Adv. in Math. 72 (1988), 171-210.Mathematical Reviews (MathSciNet): MR972760
Zentralblatt MATH: 0681.20028
Digital Object Identifier: doi:10.1016/0001-8708(88)90027-8 - [4] K. AKIN, D. A. BUCHSBAUM AND J. WEYMAN, Schur functors and Schur comlexes, Adv. in Math. 4 (1982), 207-278.Mathematical Reviews (MathSciNet): MR658729
Zentralblatt MATH: 0497.15020
Digital Object Identifier: doi:10.1016/0001-8708(82)90039-1 - [5] G. M. BERGMAN, The diamond lemma for ring theory, Adv. in Math. 29 (1978), 178-218Mathematical Reviews (MathSciNet): MR506890
Zentralblatt MATH: 0377.16013
Digital Object Identifier: doi:10.1016/0001-8708(78)90010-5 - [6] C. CURTIS AND I. REINER, Representation theory of finite groups and associative algebras, Pure an Appl. Math., vol. 11, Interscience, New York, 1962; 2nd ed., 1966.
- [7] V. G. DRIN'FELD, Quantum groups, Proc. ICM, Berkeley, 1986Mathematical Reviews (MathSciNet): MR934283
- [8] E. DATE, M. Jimbo and T. Miwa, Representations of Uq(Q(n, C)) at g =0 and the Robinson-Shenste correspondence, Memorial Volume for Vadim Kniznik, Physics and Mathematics of Strings, World Scientific, Singapore, 1990, 185-211.
- [9] P. DELIGNE AND J. MILNE, Tannakian categories, Lecture Notes in Math. 900, Springer-Verlag, Berli Heidelberg New York, 1982, 101-228.Zentralblatt MATH: 0477.14004
- [10] R. DIPPER AND G. JAMES, ^-tensor space and #-Weyl modules, preprint
- [11] P. DOUBILET, G. -C. ROTA AND J. STEIN, Foundations of combinatorics. IX. Combinatorial method in invariant theory, Stud. Appl. Math. 43 (1971), 1020-1058.
- [12] L. D. FADDEEV, N. Yu. RESHETIKHIN AND L. A. TAKHTAJAN, Quantization of Lie groups and Li algebras, Algebra and Analysis 1 (1989), 178-206 (English translation: Leningrad Math. J. 1 (1990), 193-225).
- [13] J. A. GREEN, Polynomial representations of GLn, Lecture Notes in Math. 830, Springer-Verlag, Berli Heidelberg New York, 1980.
- [14] A. GYOJA, A ^-analogue of Young symmetrizer, Osaka J. Math. 23 (1986), 841-852Mathematical Reviews (MathSciNet): MR873212
Zentralblatt MATH: 0644.20012
Project Euclid: euclid.ojm/1200779724 - [15] A. GYOJA AND K. UNO, On the semisimplicity of Hecke algebras, J. Math. Soc. Japan 41 (1989), 75-79Mathematical Reviews (MathSciNet): MR972165
Zentralblatt MATH: 0647.20038
Digital Object Identifier: doi:10.2969/jmsj/04110075
Project Euclid: euclid.jmsj/1230128847 - [16] T. HIBI, Distributive lattices, affine semigroup rings and algebras with straightening laws, in Advance Studies in Pure Math. 11, Kinokuniya, Tokyo and North-Holland, Amsterdam, 1987, 93-109.
- [17] T. HAYASHI, Quantum deformation of classical groups, Publ. Res. Inst, Math. Sci., Kyoto Univ. 2 (1992), 57-81.Mathematical Reviews (MathSciNet): MR1147851
Zentralblatt MATH: 0806.16040
Digital Object Identifier: doi:10.2977/prims/1195168856 - [18] M. JIMBO, A ^-difference analogue of t/(g) and the Yang-Baxter equation, Lett, in Math. Phys. 1 (1985), 63-69.Mathematical Reviews (MathSciNet): MR797001
Zentralblatt MATH: 0587.17004
Digital Object Identifier: doi:10.1007/BF00704588 - [19] M. JIMBO, Quantum R matrix related to the generalized Toda system: an algebraic approach, Lectur Notes in Phys. 246, Springer-Verlag, Berlin Heidelberg New York, 1986, 335-361.
- [20] M. JIMBO, A ^-analogue of t/(gl(7V-f 1)), Hecke algebra and the Yang-Baxter equation, Lett, in Math Phys. 11 (1986), 247-252.Mathematical Reviews (MathSciNet): MR841713
Zentralblatt MATH: 0602.17005
Digital Object Identifier: doi:10.1007/BF00400222 - [21] P. P. KULISH, N. Yu. RESHETIKHIN AND E. K. SKLYANIN, Yang-Baxter equation and representatio theory. I, Lett. Math. Phys. 5 (1981), 393-403.Mathematical Reviews (MathSciNet): MR649704
Zentralblatt MATH: 0502.35074
Digital Object Identifier: doi:10.1007/BF02285311 - [22] P. P. KULISH AND E. K. SKLYANIN, Quantum spectral transform method. Recent developments, Integrable quantum field theories, Lecture Notes in Physics 151, Springer-Verlag, Berlin Heidelberg New York, 1981, 61-119.
- [23] G. LUSZTIG, Modular representations and quantum groups, Contemp. Math. 82, Amer. Math. Soc., Providence, R. I., 1989, 59-77.
- [24] V. V. LYUBASHENKO, Hopf algebras and vector-symmetries, Uspekhi Mat. Nauk, 41-5 (1986), 185-18 (in Russian).
- [25] I. G. MACDONALD, Symmetric functions and Hall polynomials, Oxford Univ. Press, 1979
- [26] Yu. I. MANIN, Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier, Grenobl 37 (1987), 191-205.
- [27] Yu. I. MANIN, Multiparametric quantum deformation of the general linear supergroup, Commun Math. Phys. 123 (1989), 163-175.Mathematical Reviews (MathSciNet): MR1002037
Zentralblatt MATH: 0673.16004
Digital Object Identifier: doi:10.1007/BF01244022
Project Euclid: euclid.cmp/1104178686 - [28] D. G. NORTHCOTT, Multilinear algebra, Cambridge University Press, 1984
- [29] M. NOUMI, H. YAMADA AND K. MIMACHI, Finite dimensional representations of the quantum grou GLq(n) and the zonal spherical functions on Uq(n– l)\Uq(n), preprint.
- [30] B. PARSHALL AND J. WANG, Quantum linear groups, Memoirs of the Amer. Math. Soc. 439 (1991)Mathematical Reviews (MathSciNet): MR1048073
- [31] P. PODLES, Quantum spheres, Lett, in Math. Phys. 14 (1987), 193-202Mathematical Reviews (MathSciNet): MR919322
Zentralblatt MATH: 0634.46054
Digital Object Identifier: doi:10.1007/BF00416848 - [32] S. B. PRIDDY, Koszul resolutions, Trans. Amer. Math. Soc. 152-1 (1970), 39-60Mathematical Reviews (MathSciNet): MR265437
Zentralblatt MATH: 0261.18016
Digital Object Identifier: doi:10.2307/1995637
JSTOR: links.jstor.org - [33] N. Yu. RESHETIKHIN, Quantum universalenvelopingalgebras, the Yang-Baxter equation and invariant of links. I, preprint.
- [34] M. SWEEDLER, Hopf algebras, W. A. Benjamin, New York, 1969
- [35] M. TAKEUCHI, Matric bialgebras and quantum groups, Israel J. of Math. 72 (1990), 232-251Mathematical Reviews (MathSciNet): MR1098990
Zentralblatt MATH: 0723.17013
Digital Object Identifier: doi:10.1007/BF02764621 - [36] T. TANISAKI, Finite dimensional representations of quantum groups, Osaka J. of Math. 28(1991), 37-54Mathematical Reviews (MathSciNet): MR1096926
Zentralblatt MATH: 0729.17008
Project Euclid: euclid.ojm/1200782857 - [37] E. TAFT AND J. TOWBER, Quantum deformation of flag schemes and Grassmann schemes I ^-deformation of the shape-algebra for GL(n), J. Algebra 142 (1991), 1-36.Mathematical Reviews (MathSciNet): MR1125202
Zentralblatt MATH: 0739.17007
Digital Object Identifier: doi:10.1016/0021-8693(91)90214-S - [38] V. G. TURAEV, The Yang-Baxter equation and invariant of links, Invent. Math. 92 (1988), 527-553Mathematical Reviews (MathSciNet): MR939474
Zentralblatt MATH: 0648.57003
Digital Object Identifier: doi:10.1007/BF01393746 - [39] K. UENO, T. Takebayashi, Y. Shibukawa, Gelfand-Tsetlin basis for representations of the quantu group GLq(N+ 1) and the basic quantum affine space, preprint.
- [40] S. L. WORONOWICZ, Compact matrix pseudogroups, Comm. Math. Phys. III (1987), 613-665Mathematical Reviews (MathSciNet): MR901157
Zentralblatt MATH: 0627.58034
Digital Object Identifier: doi:10.1007/BF01219077
Project Euclid: euclid.cmp/1104159726
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Bicovariant quantum algebras and quantum Lie algebras
Schupp, Peter, Watts, Paul, and Zumino, Bruno, Communications in Mathematical Physics, 1993 - Hall algebras and quantum Frobenius
Mcgerty, Kevin, Duke Mathematical Journal, 2010 - Quantum affine algebras
Chari, Vyjayanthi and Pressley, Andrew, Communications in Mathematical Physics, 1991
- Bicovariant quantum algebras and quantum Lie algebras
Schupp, Peter, Watts, Paul, and Zumino, Bruno, Communications in Mathematical Physics, 1993 - Hall algebras and quantum Frobenius
Mcgerty, Kevin, Duke Mathematical Journal, 2010 - Quantum affine algebras
Chari, Vyjayanthi and Pressley, Andrew, Communications in Mathematical Physics, 1991 - Quantum deformation of BRST algebra
Watamura, Satoshi, Communications in Mathematical Physics, 1993 - On the algebraic structure of quantum mechanics
Gunson, J., Communications in Mathematical Physics, 1967 - Quantum Vertex Algebras
Borcherds, Richard E., , 2001 - Cluster algebras and quantum affine algebras
Hernandez, David and Leclerc, Bernard, Duke Mathematical Journal, 2010 - Complex quantum groups and their quantum enveloping algebras
Drabant, Bernhard, Schlieker, Michael, Weich, Wolfgang, and Zumino, Bruno, Communications in Mathematical Physics, 1992 - Harish-Chandra isomorphisms for quantum algebras
Tanisaki, Toshiyuki, Communications in Mathematical Physics, 1990 - Nonassociative quantum theory on octooctonion algebra
Köplinger, Jens, Journal of Physical Mathematics, 2009


