Tohoku Mathematical Journal

Harmonic maps and associated maps from simply connected Riemann surfaces into the $3$-dimensional space forms

Atsushi Fujioka

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 47, Number 3 (1995), 431-439.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178225525

Digital Object Identifier
doi:10.2748/tmj/1178225525

Mathematical Reviews number (MathSciNet)
MR1344911

Zentralblatt MATH identifier
0846.58019

Subjects
Primary: 58E20: Harmonic maps [See also 53C43], etc.
Secondary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]

Citation

Fujioka, Atsushi. Harmonic maps and associated maps from simply connected Riemann surfaces into the $3$-dimensional space forms. Tohoku Math. J. (2) 47 (1995), no. 3, 431--439. doi:10.2748/tmj/1178225525. https://projecteuclid.org/euclid.tmj/1178225525


Export citation

References

  • [BP] F. E. BURSTALL AND F. PEDIT, Harmonic maps via Adler-Kostant-Symes theory, Harmonic maps and Integrable Systems (A. Fordy and J. C. Wood, eds.), Aspects of Mathematics, Vieweg (1994), 221-272.
  • [BR] F. E. BURSTALL AND J. H. RAWNSLEY, Twistor theory for Riemannian symmetric spaces, Lectur Notes in Math. 1424(1990), Springer, Berlin, Heidelberg, New York.
  • [F] A. FUJIOKA, A generalization of //-surfaces and a certain duality, J. Math. Soc. Japan. 47 (1995), 183-190.
  • [H] N. J. HITCHIN, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987), 59-126.
  • [L] B. LAWSON, Complete minimal surfaces in S3, Ann. of Math. 92 (1970), 335-374