Tohoku Mathematical Journal

Sharp Opial-type inequalities involving $r$-derivatives and their applications

Ravi P. Agarwal

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 47, Number 4 (1995), 567-593.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178225462

Digital Object Identifier
doi:10.2748/tmj/1178225462

Mathematical Reviews number (MathSciNet)
MR1359728

Zentralblatt MATH identifier
0843.26009

Subjects
Primary: 26D10: Inequalities involving derivatives and differential and integral operators
Secondary: 34A12: Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions 34A40: Differential inequalities [See also 26D20]

Citation

Agarwal, Ravi P. Sharp Opial-type inequalities involving $r$-derivatives and their applications. Tohoku Math. J. (2) 47 (1995), no. 4, 567--593. doi:10.2748/tmj/1178225462. https://projecteuclid.org/euclid.tmj/1178225462


Export citation

References

  • [1] R. P. AGARWAL, Opias and Wirtinger's type discrete inequalities in two independent variables, Applicable Analysis 43 (1992), 47-62.
  • [2] R. P. AGARWAL AND V. LAKSHMIKANTHAM, Uniqueness and Nonuniqueness Criteria for Ordinar Differential Equations, World Scientific, Singapore, 1993.
  • [3] R. P. AGARWAL AND P. Y. H. PANG, Remarks on the generalizationsof Opias inequality, J. Math.Anal Appl. 190 (1995), 559-577.
  • [4] R. P. AGARWAL AND P. Y. H. PANG, Opial-type inequalities involving higher order derivatives, J. Math. Anal. Appl. 189 (1995), 85-103.
  • [5] D. W. BOYD, Best constants in inequalities related to Opias inequality, J. Math. Anal. Appl. 2 (1969), 378-387.
  • [6] WING-SUM CHEUNG, Some new Opial-type inequalities, Mathematika 37 (1990), 136-142
  • [7] K. M. DAS, An inequality similar to Opias inequality, Proc. Amer. Math. Soc. 22 (1969), 258-261
  • [8] A. B. FAGBOHUN AND C. O. IMORU, A new class of integrodifferential inequalities, Simon Stevin 6 (1986), 301-311.
  • [9] A. M. FINK, On Opias inequality for f(n Proc. Amer. Math. Soc. 115(1992), 177-181
  • [10] C. H. FITZGERALD, Opial-type inequalitiesthat involve higher order derivatives, in General Inequalitie IV, (ed. W. Walter), Birkhauser, Basel, 1984, 25-36.
  • [11] T. KUSANO AND H. ONOSE, Asymptotic behavior of nonoscillatory solutions of functional equation of arbitrary order, J. London Math. Soc.14 (1976), 106-112.
  • [12] T. KUSANO AND H. ONOSE, Nonoscillation theorems for differential equations with deviating arguments, Pacific J. Math. 63 (1976), 185-192.
  • [13] Ju-DA Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal Appl. 167(1992), 98-110.
  • [14] C. T. LIN, Some generalizations of Opias inequality, Tamkang J. Math. 24 (1986), 451^55
  • [15] C. T. LIN AND G. S. YANG, On some integrodifferential inequalities, Tamkang J. Math. 16 (1985), 123-129.
  • [16] D. S. MITRINOVIC, J. E. PECARIC AND A. M. FINK, Inequalities Involving Functions and their Integral and Derivatives, Kluwer, Dordrecht, 1991.
  • [17] B. G. PACHPATTE, On Opial-type integral inequalities, J. Math. Anal. Appl. 120 (1986), 547-556
  • [18] B. G. PACHPATTE, On some new generalizations of Opial inequality, Demonstratio Mathematica 1 (1986), 281-291.
  • [19] B. G. PACHPATTE, On certain integral inequalities related to Opias inequality, Period. Math. Hungar 17 (1986), 119-125.
  • [20] B. G. PACHPATTE, On inequalities of the Opial type, Demonstration Mathematica 25 (1992), 35-45
  • [21] CH. G. PHILOS, Oscillatory and asymptotic behaviour of all solutions of differential equations wit deviating arguments, Proc. Royal Soc. Edinburgh 81 (1978), 195-210.
  • [22] CH. G. PHILOS AND V. A. STAIKOS, Asymptotic properties of nonoscillatory solutions of differentia equations with deviating argument, Pacific J. Math. 70 (1977), 221-242.
  • [23] G. I. ROZANOVA, Inequalities that contain derivatives of different orders (Russian), Math. Phys., Mosko Gos. Ped. Inst. Im. Lenina 3 (1976), 104^108.
  • [24] V. A. STAIKOS AND CH. G. PHILOS, Nonoscillatory phenomena and damped oscillation, Nonlinea Analysis 2 (1978), 197-210.
  • [25] V. A. STAIKOS AND CH. G. PHILOS, Correction to: Some oscillation and asymptotic properties for linea differential equations, Bull. Fac. Sci. Ibaraki Univ. Math. 10 (1978), 81-83.
  • [26] W. F. TRENCH, Oscillation properties of perturbed disconjugate equations, Proc. Amer. Math. Soc 52 (1975), 147-155.
  • [27] D. WILLETT, The existence-uniqueness theorems for an n-th order linear ordinary differential equation, Amer. Math. Monthly 75 (1968), 174^178.
  • [28] G. S. YANG, A note on an inequality similar to Opial inequality, Tamkang J. Math. 18 (1987), 101-104.