Tohoku Mathematical Journal

On sharpness, applications and generalizations of some Carleman type inequalities

Ljubomir T. Dechevsky and Lars-Erik Persson

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 48, Number 1 (1996), 1-22.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178225409

Digital Object Identifier
doi:10.2748/tmj/1178225409

Mathematical Reviews number (MathSciNet)
MR1373171

Zentralblatt MATH identifier
0849.47006

Subjects
Primary: 47A10: Spectrum, resolvent
Secondary: 47B10: Operators belonging to operator ideals (nuclear, p-summing, in the Schatten-von Neumann classes, etc.) [See also 47L20] 47G10: Integral operators [See also 45P05]

Citation

Dechevsky, Ljubomir T.; Persson, Lars-Erik. On sharpness, applications and generalizations of some Carleman type inequalities. Tohoku Math. J. (2) 48 (1996), no. 1, 1--22. doi:10.2748/tmj/1178225409. https://projecteuclid.org/euclid.tmj/1178225409


Export citation

References

  • [1] J. BERGH AND J. LOFSTROM, Interpolation Spaces. An Introduction, Springer, Berlin-Heidelberg-New York, 1976.
  • [2] M. SH. BIRMAN AND M. Z. SOLOMJAK, On the estimation of the singular numbers of integral operators, I, Vestnik Leningradskogo Universiteta, 7 (1967), 43-53 (in Russian).
  • [3] M. SH. BIRMAN AND M. Z. SOLOMJAK, On the estimation of the singular numbers of integral operators, II, Vestnik Leningradskogo Universiteta, 13 (1967), 21-28 (in Russian).
  • [4] M. SH. BIRMAN AND M. Z. SOLOMJAK, On the estimation of the singular numbers of integral operators, III, Operators in unbounded domains, Vestnik Leningradskogo Universiteta, 1 (1969), 35^8 (in Russian).
  • [5] M. S. BRODSK AND M. S. LIVSIC, Spectral analysis of nonselfadjoint operators and unstable systems, Uspekhi Matem. Nauk 13 (1958), 1-85 (in Russian).
  • [6] T. CARLEMAN, Zur theorie der linearen integralgleichungen, Math. Z. 9 (1921), 196-217
  • [7] L. T. DECHEVSKY AND L. E. PERSSON, Sharp generalized Carleman inequalitieswith minimal informatio about the spectrum, Math. Nachr. 168 (1994), 61-77.
  • [8] L. T. DECHEVSKY AND Y. S. ZVISKOVA, An inequality about perturbated analytic functions of operato argument and applications, Godishnik na VTUZ, Matematika (in print).
  • [9] L. T. DECHEVSKY AND Y. S. ZVISKOVA, On the approximation error of perturbated integral equations, Godishnik na VTUZ, Matematika (in print).
  • [10] N. DUNFORD AND J. T. SCHWARTZ, Linear Operators, Vol. 1: General Theory, Wiley, New York, 1988
  • [11] N. DUNFORD AND J. T. SCHWARTZ, Linear Operators, Vol. 2: Spectral Theory. Selfadjont Operator in Hubert Spaces, Wiley, New York, 1988.
  • [12] G. E. KARADZHOV, On the application of the theory of interpolation spaces to estimates of the singula numbers of integral operators, Problemy Matematiceskogo Analiza, Leningrad (1973), 37-45 (in Russian).
  • [13] G. E. KARADZHOV, On estimates of the singular numbers of integral operators, Godishnik na VTU (Bulgaria), Matematika, research report 11, 1975 (in Russian).
  • [14] G. E. KARADZHOV, The "means" Interpolation Method for Quasinormed Spaces and its Applications, Thesis, Leningrad, 1973 (in Russian).
  • [15] G. E. KARADZHOV, On the integral operators belonging to the classes 5, for 0#2, Serdica 3 (1977), 52-70 (in Russian).
  • [16] M. A. KRASNOSEL'SKH, P. P. ZABREIKO, E. I. PUSTIL'NIK AND P. E. SOBOLEVSKII, Integral operators i spaces of summable functions, Moscow, Nauka, 1966 (in Russian).
  • [17] H. KONIG, Eigenvalue Distribution of Compact Operators, Birkhauser, Basel-Boston-Stuttgart, 1986
  • [18] M. S. LIVSIC, On the spectral resolution of nonselfadjoint operators, Mat. Sbornik 31, 73 (1954), 149-199 (in Russian).
  • [19] A. W. MARSHALL AND I. OLKIN, Inequalities: Theory of Majorization and its Applications, Academi Press, Orlando-San Diego-New York-Austin-Boston-London-Sydney-Tokyo-Toronto, 1979.
  • [20] A. PIETSCH, Operator Ideals, North-Holland, Amsterdam, 1980
  • [21] L. E. PERSSON, Real interpolation between some operator ideals, In: Function Spaces and Application (Proc. of the US-Swedish Seminar held in Lund, June 1986), Lecture Notes in Math. 1302 (1988), Springer, Berlin-New York, 347-362.
  • [22] M. REED AND B. SIMON, Methods of Mathematical Physics, Vol. 1: Functional Analysis, Academi Press, New York, 1975.
  • [23] R. SCHATTEN AND J. VONNEUMANN, The cross space of linear transformations, III., Ann. of Math 49 (1948), 557-582.
  • [24] BL. SENDOV AND V. A. POPOV, Averaged moduli of smoothness, Bulgarian Mathematical Monograph 4, Sofia, Bulg. Acad. Sci., 1983 (in Bulgarian).
  • [25] I. H. SLOAN AND W. L. WENDLAND, A quadrature-based approach to improving the collocation metho for splines of even degree, Seminar Analysis und Anwendungen, Mathematisches Institut A, Universitat Stuttgart, Research report 13, August 1988.