Tohoku Mathematical Journal

Eisenstein series on weakly spherical homogeneous spaces of ${\rm GL}(n)$

Fumihiro Sato

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 50, Number 1 (1998), 23-69.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178225014

Digital Object Identifier
doi:10.2748/tmj/1178225014

Mathematical Reviews number (MathSciNet)
MR1604624

Zentralblatt MATH identifier
0944.11017

Subjects
Primary: 11F55: Other groups and their modular and automorphic forms (several variables)
Secondary: 11F66: Langlands $L$-functions; one variable Dirichlet series and functional equations

Citation

Sato, Fumihiro. Eisenstein series on weakly spherical homogeneous spaces of ${\rm GL}(n)$. Tohoku Math. J. (2) 50 (1998), no. 1, 23--69. doi:10.2748/tmj/1178225014. https://projecteuclid.org/euclid.tmj/1178225014


Export citation

References

  • [Ba] E. P. VANDEN BAN, The principal series for a reductive symmetric space, II, Eisenstein integrals, J. Funct. Anal. 109 (1992), 331-441.
  • [GS] I. M. GELFAND AND G. E. SHILOV, Generalized functions, Vol. I, Academic Press, New York, 1964.
  • [G] A. GYOJA, Bernstein-Sato's polynomial for several analytic functions, J. Math. Kyoto Univ. 3 (1993), 399-411.
  • [He] A. HELMINCK, Algebraic groups with a commuting pair of involutions and semisimple symmetri spaces, Advances in Math. 71 (1988), 21-91.
  • [HS] Y. HIRONAKA AND F. SATO, Eisenstein series on reductive symmetric spaces and representation o Hecke algebras, J. reine angew. Math. 445 (1993), 45-108.
  • [KKO] S. KASAI, T. KIMURA AND S. OTANI, A classification of simple weakly spherical homogeneous space (I), J. Algebra 109 (1996), 277-304.
  • [Ki] T. KIMURA, The 6-functions and holonomy diagrams of irreducible regular prehomogeneou vector spaces, Nagoya Math. J. 85 (1982), 1-80.
  • [Kn] F. KNOP, Weylgruppe und Momentabbildung, Invent. Math. 99 (1990), 1-23
  • [L] R. P. LANGLANDS, On the functional equations satisfied by Eisenstein series, Lect. Notes in Math 544, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
  • [M] H. MAASS, Sieges modular forms and Dirichlet series, Lect. Notes in Math. 216, Springer-Verlag, Berlin, Heidelberg, New York, 1971.
  • [Mar] G. A. MARGULIS, Dynamical and ergodic properties of subgroups actions on homogeneous space with applications to number theory, Proc. Intern. Congr. Math., Kyoto, 1990, Vol. I, 193--215.
  • [R] M. RATNER, Invariant measures and orbit closures for unipotent actions on homogeneous spaces, Geom. Funct. Anal. 4 (1994), 236-256.
  • [Sab] C. SABBAH, Proximite evanescente II, Compositio Math. 64 (1987), 213-241
  • [SI] F. SATO, Zeta functions in several variables associated with prehomogeneous vector spaces I Functional equations, Thoku Math. J. 34 (1982), 437-483.
  • [S2] F. SATO, Zeta functions in several variables associated with prehomogeneous vector spaces II: convergence criterion, Thoku Math. J. 35 (1983), 77-99.
  • [S3] F. SATO, Zeta functions in several variables associated with prehomogeneous vector spaces III Eisenstein series for indefinite quadratic forms, Ann. of Math. 116 (1982), 177-212.
  • [S4] F. SATO, On zeta functions of ternary zero forms, J. Fac. Sci. Univ. Tokyo 28 (1982), 585-604
  • [S5] F. SATO, Eisenstein series on semisimple symmetric spaces of Chevalley groups, Advanced Studie in Pure Math. 7, Automorphic Forms and Number Theory, (I. Satake, ed.), Kinokuniya, Tokyo, 1985, 295-332.
  • [S6] F. SATO, Eisenstein series on the Siegel half space of signature (1, 1), Comment. Math. Univ. St Pauli 37 (1988), 99-125.
  • [S7] F. SATO, Eisenstein series on weakly spherical homogeneous spaces and zeta functions o prehomogeneous vector spaces, Comment. Math. Univ. St. Pauli 44 (1995), 129-150.
  • [S8] F. SATO, Eisenstein series on Spin0\GL6, Preprint, 1995
  • [S9] F. SATO, Regularization of Eisenstein periods, in preparation
  • [SK] M. SATO AND T. KIMURA, A classification of irreducible prehomogeneous vector spaces and thei invariants, Nagoya Math. J. 65 (1977), 1-155.
  • [SS] M. SATO AND T. SHINTANI, On zeta functions associated with prehomogeneous vector spaces, Ann of Math. 100(1974), 131-170.
  • [Se] A. SELBERG, Discontinuous groups and harmonic analysis, Proc. Intern. Congr. Math., Stockholm, 1962, 177-189.
  • [Si] C. L. SIEGEL, Uber die Zetafunktionen indefiniter quadratischer Formen I, II, Math. Z. 43 (1938), 682-708; 44 (1939), 398^26.
  • [T] A. TERRAS, Functional equations of generalized Epstein zeta functions in several variables, Nagoy Math. J. 44 (1971), 89-95.
  • [V] T. VUST, Operation de groupes reductifs dans un type de cone presque homogenes, Bull. Soc Math. France 102 (1974), 317-334.